Decoding the inconsistency of six cropland maps in China

中国 基本事实 碎片(计算) 地理 农业 土地覆盖 自然地理学 土地利用 环境科学 遥感 地图学 环境资源管理 计算机科学 考古 机器学习 土木工程 工程类 操作系统
作者
Yifeng Cui,Ronggao Liu,Zhichao Li,Chao Zhang,Xiao‐Peng Song,Jilin Yang,Le Yu,Mengxi Chen,Jinwei Dong
出处
期刊:Crop Journal [Elsevier]
卷期号:12 (1): 281-294 被引量:3
标识
DOI:10.1016/j.cj.2023.11.011
摘要

Accurate cropland information is critical for agricultural planning and production, especially in food-stressed countries like China. Although widely used medium-to-high-resolution satellite-based cropland maps have been developed from various remotely sensed data sources over the past few decades, considerable discrepancies exist among these products both in total area and in spatial distribution of croplands, impeding further applications of these datasets. The factors influencing their inconsistency are also unknown. In this study, we evaluated the consistency and accuracy of six cropland maps widely used in China in circa 2020, including three state-of-the-art 10-m products (i.e., Google Dynamic World, ESRI Land Cover, and ESA WorldCover) and three 30-m ones (i.e., GLC_FCS30, GlobeLand 30, and CLCD). We also investigated the effects of landscape fragmentation, climate, and agricultural management. Validation using a ground-truth sample revealed that the 10-m-resolution WorldCover provided the highest accuracy (92.3%). These maps collectively overestimated Chinese cropland area by up to 56%. Up to 37% of the land showed spatial inconsistency among the maps, concentrated mainly in mountainous regions and attributed to the varying accuracy of cropland maps, cropland fragmentation and management practices such as irrigation. Our work shed light on the promotion of future cropland mapping efforts, especially in highly inconsistent regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助无限的隶采纳,获得10
刚刚
在云里爱与歌完成签到,获得积分10
1秒前
迟大猫应助研究生采纳,获得10
1秒前
可行完成签到,获得积分10
1秒前
1秒前
yuhui完成签到,获得积分10
1秒前
2秒前
pi发布了新的文献求助10
2秒前
2秒前
小蘑菇应助科研菜鸟采纳,获得10
3秒前
Owen应助晚风采纳,获得10
3秒前
小二郎应助Jiangnj采纳,获得10
3秒前
微信研友完成签到,获得积分10
3秒前
科研通AI5应助陈杰采纳,获得10
3秒前
4秒前
Jasper应助含糊采纳,获得10
4秒前
dfggg发布了新的文献求助10
4秒前
跑在颖发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
yatou5651发布了新的文献求助10
4秒前
5秒前
乐乐应助koi采纳,获得10
5秒前
asdfqwer发布了新的文献求助10
5秒前
5秒前
chemhub完成签到,获得积分10
5秒前
杜杜完成签到,获得积分10
6秒前
周小慧发布了新的文献求助10
6秒前
6秒前
自由寻菱完成签到 ,获得积分10
6秒前
7秒前
Akim应助丘奇采纳,获得10
8秒前
美丽小蕾发布了新的文献求助10
8秒前
dingdong发布了新的文献求助10
8秒前
ZX完成签到 ,获得积分10
8秒前
九川发布了新的文献求助10
8秒前
9秒前
9秒前
SandyH关注了科研通微信公众号
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762