卡尔曼滤波器
分歧(语言学)
传感器融合
计算机科学
非线性系统
无味变换
信息融合
融合
跟踪(教育)
算法
快速卡尔曼滤波
扩展卡尔曼滤波器
不变扩展卡尔曼滤波器
状态空间表示
人工智能
数学
控制理论(社会学)
心理学
教育学
哲学
语言学
物理
控制(管理)
量子力学
作者
Hongfei Li,Guchong Li,Tiancheng Li
标识
DOI:10.1109/iccais59597.2023.10382245
摘要
This paper presents a novel multi-sensor Kalman filter (KF) based on the arithmetic average (AA) fusion method. In this approach, the fusing weights are designed according to the online Kalman gain matrix obtained from each local filter. Both the standard KF and the unscented KF (UKF) are applied to linear and nonlinear state space models, respectively. Simulation results demonstrate the superior target tracking performance of our approach compared to the recently proposed suboptimal AA fusion method using the Kullback-Leibler divergence (KLD) in both linear and nonlinear scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI