医学
杠杆(统计)
医疗保健
病人护理
结构化
医学物理学
算法
鉴定(生物学)
管道(软件)
临床实习
放射科
机器学习
人工智能
护理部
计算机科学
植物
生物
经济增长
经济
程序设计语言
财务
作者
Allison Chae,Michael S. Yao,Hersh Sagreiya,Ari D. Goldberg,Neil Chatterjee,Matthew T. MacLean,Jeffrey Duda,Ameena Elahi,Arijitt Borthakur,Marylyn D. Ritchie,Daniel J. Rader,Charles E. Kahn,Walter R. Witschey,James C. Gee
出处
期刊:Radiology
[Radiological Society of North America]
日期:2024-01-01
卷期号:310 (1)
被引量:5
标识
DOI:10.1148/radiol.223170
摘要
Despite recent advancements in machine learning (ML) applications in health care, there have been few benefits and improvements to clinical medicine in the hospital setting. To facilitate clinical adaptation of methods in ML, this review proposes a standardized framework for the step-by-step implementation of artificial intelligence into the clinical practice of radiology that focuses on three key components: problem identification, stakeholder alignment, and pipeline integration. A review of the recent literature and empirical evidence in radiologic imaging applications justifies this approach and offers a discussion on structuring implementation efforts to help other hospital practices leverage ML to improve patient care. Clinical trial registration no. 04242667 © RSNA, 2024
科研通智能强力驱动
Strongly Powered by AbleSci AI