The state of cumulative sum sequential changepoint testing 70 years after Page

数学 统计
作者
Alexander Aue,Claudia Kirch
出处
期刊:Biometrika [Oxford University Press]
卷期号:111 (2): 367-391 被引量:5
标识
DOI:10.1093/biomet/asad079
摘要

Abstract Quality control charts aim at raising an alarm as soon as sequentially obtained observations of an underlying random process no longer seem to be within stochastic fluctuations prescribed by an in-control scenario. Such random processes can often be modelled using the concept of stationarity, or even independence as in most classical works. An important out-of-control scenario is the changepoint alternative, for which the distribution of the process changes at an unknown point in time. In his seminal 1954 Biometrika paper, E. S. Page introduced the famous cumulative sum control charts for changepoint monitoring. Innovatively, decision rules based on cumulative sum procedures took the full history of the process into account, whereas previous procedures were based only on a fixed and typically small number of the most recent observations. The extreme case of using only the most recent observation, often referred to as the Shewhart chart, is more akin to serial outlier than changepoint detection. Page’s cumulative sum approach, introduced seven decades ago, is ubiquitous in modern changepoint analysis, and his original paper has led to a multitude of follow-up papers in different research communities. This review is focused on a particular subfield of this research, namely nonparametric sequential, or online, changepoint tests that are constructed to maintain a desired Type-1 error as opposed to the more traditional approach seeking to minimize the average run length of the procedures. Such tests have originated at the intersection of econometrics and statistics. We trace the development of these tests and highlight their properties, mostly using a simple location model for clarity of exposition, but we also review more complex situations such as regression and time series models.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助无敌橙汁oh采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
爆米花应助manman采纳,获得30
2秒前
今后应助Erictancqmu采纳,获得10
3秒前
颜林林发布了新的文献求助10
3秒前
充电宝应助无敌娜采纳,获得10
4秒前
wang发布了新的文献求助10
5秒前
奥特曼发布了新的文献求助10
5秒前
星辰大海应助鲸落采纳,获得10
6秒前
8秒前
优美的元瑶完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
善学以致用应助wang采纳,获得10
13秒前
14秒前
佳子发布了新的文献求助20
14秒前
14秒前
15秒前
然大宝发布了新的文献求助10
15秒前
16秒前
16秒前
跳跃忆南发布了新的文献求助30
16秒前
11完成签到,获得积分10
17秒前
丰知然应助lovt123采纳,获得10
18秒前
赘婿应助颜林林采纳,获得10
18秒前
19秒前
开心幻巧完成签到,获得积分10
19秒前
陈俞发布了新的文献求助10
20秒前
一匹黑狼完成签到,获得积分20
21秒前
22秒前
22秒前
无敌娜发布了新的文献求助10
22秒前
善学以致用应助ChinaNiu采纳,获得10
22秒前
小康发布了新的文献求助10
23秒前
发发发布了新的文献求助10
23秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416639
求助须知:如何正确求助?哪些是违规求助? 3018421
关于积分的说明 8884216
捐赠科研通 2705746
什么是DOI,文献DOI怎么找? 1483866
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681004