Dynamic planning method of evacuation route in dam-break flood scenario based on the ACO-GA hybrid algorithm

蚁群优化算法 大洪水 遗传算法 计算机科学 数学优化 布线(电子设计自动化) 启发式 托普西斯 紧急疏散 运筹学 算法 工程类 人工智能 数学 计算机网络 哲学 海洋学 神学 地质学
作者
Kai Dong,Dongwen Yang,Jinbao Su,Wendong Zhang,Peiran Jing
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:100: 104219-104219 被引量:1
标识
DOI:10.1016/j.ijdrr.2023.104219
摘要

As the major water storage infrastructure, the failure of a reservoir dam will cause significant losses to people's lives and property. A scientific and reasonable evacuation route is one of the essential measures to reduce casualties. Thus, it is of great significance to realize the dynamic planning of evacuation routes in dam-break flood scenarios to reduce the risk of dam failure. This study employed a physically based mathematical model (Breach model) and a two-dimensional hydrodynamic model to simulate dam-break flood routing. Further, a road network construction method was proposed based on the graph theory and flood routing information. The ant colony optimization algorithm (ACO) was improved by the backtracking, the improved heuristic function, and the elite ants, and the genetic algorithm (GA) was optimized according to the characteristics of flood avoidance route planning. Accordingly, an improved ant colony-genetic optimization hybrid algorithm (ACO-GA) was proposed. Compared with the basic ACO algorithm, the correct rate of simulation results of the ACO-GA hybrid algorithm was improved by 34 %, the average number of iterations was reduced by 18.3 times, and the optimization ability was markedly enhanced. Based on the constructed dam-break flood scenario and the ACO-GA hybrid algorithm, the novel dynamic planning method for evacuation routes in the dam-break flood scenario was proposed. Moreover, this method was applied to a typical water conservancy engineering project, and the planned optimal evacuation routes accurately avoided the flood influence, and the calculation results were reasonable and accurate. The real-time dynamic planning of flood avoidance routes based on flood routing information was realized. This study provides effective guarantee for the emergency transfer of downstream people, which has valuable implications for the theoretical research and engineering practice of reservoir dam safety and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼的飞鸟完成签到,获得积分10
1秒前
lee给学不可以已的求助进行了留言
1秒前
2秒前
rubo发布了新的文献求助10
2秒前
今后应助北林采纳,获得10
3秒前
立军发布了新的文献求助30
3秒前
xw完成签到,获得积分20
4秒前
4秒前
4秒前
好困应助火星上慕晴采纳,获得10
6秒前
6秒前
8秒前
9秒前
10秒前
10秒前
11秒前
zwy109完成签到 ,获得积分10
11秒前
bynowcc完成签到 ,获得积分10
11秒前
不配.应助迪迦奥特曼采纳,获得20
13秒前
打打应助嘻嘻哈哈采纳,获得10
14秒前
15秒前
春日发布了新的文献求助10
15秒前
JOKER发布了新的文献求助10
15秒前
19秒前
HHH完成签到,获得积分10
20秒前
科研通AI2S应助好好干活采纳,获得10
20秒前
22秒前
xiexuqin完成签到,获得积分10
22秒前
23秒前
嘻嘻哈哈完成签到,获得积分20
24秒前
HHH发布了新的文献求助10
24秒前
干净的从梦完成签到,获得积分10
25秒前
搜集达人应助拼搏的青雪采纳,获得10
27秒前
传奇3应助叶十七采纳,获得10
27秒前
潇洒新筠完成签到,获得积分20
28秒前
穆仰完成签到,获得积分10
28秒前
xiaoluuu发布了新的文献求助10
29秒前
活力映阳关注了科研通微信公众号
30秒前
30秒前
sheepm完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148036
求助须知:如何正确求助?哪些是违规求助? 2799034
关于积分的说明 7833337
捐赠科研通 2456217
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628077
版权声明 601620