DM-CNN: Dynamic Multi-scale Convolutional Neural Network with uncertainty quantification for medical image classification

卷积神经网络 过度拟合 联营 计算机科学 特征(语言学) 人工智能 卷积(计算机科学) 模式识别(心理学) 辍学(神经网络) 深度学习 机器学习 人工神经网络 数据挖掘 语言学 哲学
作者
Qi Han,Xin Qian,Hongxiang Xu,Kepeng Wu,Lun Meng,Zicheng Qiu,Tengfei Weng,Baoping Zhou,Xianqiang Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107758-107758 被引量:27
标识
DOI:10.1016/j.compbiomed.2023.107758
摘要

Convolutional neural network (CNN) has promoted the development of diagnosis technology of medical images. However, the performance of CNN is limited by insufficient feature information and inaccurate attention weight. Previous works have improved the accuracy and speed of CNN but ignored the uncertainty of the prediction, that is to say, uncertainty of CNN has not received enough attention. Therefore, it is still a great challenge for extracting effective features and uncertainty quantification of medical deep learning models In order to solve the above problems, this paper proposes a novel convolutional neural network model named DM-CNN, which mainly contains the four proposed sub-modules : dynamic multi-scale feature fusion module (DMFF), hierarchical dynamic uncertainty quantifies attention (HDUQ-Attention) and multi-scale fusion pooling method (MF Pooling) and multi-objective loss (MO loss). DMFF select different convolution kernels according to the feature maps at different levels, extract different-scale feature information, and make the feature information of each layer have stronger representation ability for information fusion HDUQ-Attention includes a tuning block that adjust the attention weight according to the different information of each layer, and a Monte-Carlo (MC) dropout structure for quantifying uncertainty MF Pooling is a pooling method designed for multi-scale models, which can speed up the calculation and prevent overfitting while retaining the main important information Because the number of parameters in the backbone part of DM-CNN is different from other modules, MO loss is proposed, which has a fast optimization speed and good classification effect DM-CNN conducts experiments on publicly available datasets in four areas of medicine (Dermatology, Histopathology, Respirology, Ophthalmology), achieving state-of-the-art classification performance on all datasets. DM-CNN can not only maintain excellent performance, but also solve the problem of quantification of uncertainty, which is a very important task for the medical field. The code is available: https://github.com/QIANXIN22/DM-CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxx完成签到,获得积分10
刚刚
Gotyababy发布了新的文献求助10
1秒前
1秒前
apt完成签到 ,获得积分10
1秒前
阳yang发布了新的文献求助10
3秒前
布吉岛发布了新的文献求助10
3秒前
1035646426完成签到,获得积分10
4秒前
5秒前
小芳不止妖娆完成签到,获得积分10
6秒前
小二郎应助哆1627_采纳,获得30
6秒前
旺旺发布了新的文献求助10
6秒前
6秒前
木木发布了新的文献求助30
7秒前
达芬达发布了新的文献求助30
9秒前
9秒前
万能图书馆应助just采纳,获得10
11秒前
13秒前
Lucas应助旺旺采纳,获得10
13秒前
小垃圾完成签到,获得积分20
13秒前
嘻嘻嘻完成签到,获得积分10
14秒前
14秒前
jump发布了新的文献求助10
16秒前
Yang发布了新的文献求助10
16秒前
悲伤西米露应助Moon采纳,获得10
16秒前
所所应助Jessica采纳,获得10
16秒前
xiangrikui完成签到,获得积分0
17秒前
jump发布了新的文献求助10
17秒前
善学以致用应助faoran采纳,获得10
20秒前
24秒前
冲冲冲完成签到,获得积分10
26秒前
无花果应助不羁的红枫叶采纳,获得10
26秒前
faoran发布了新的文献求助10
27秒前
27秒前
思源应助翠果的嘴采纳,获得10
27秒前
29秒前
无心的土豆完成签到 ,获得积分10
29秒前
30秒前
冬灵发布了新的文献求助10
31秒前
闾丘惜萱发布了新的文献求助10
32秒前
Wei应助Gotyababy采纳,获得10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740888
求助须知:如何正确求助?哪些是违规求助? 3283720
关于积分的说明 10036321
捐赠科研通 3000434
什么是DOI,文献DOI怎么找? 1646510
邀请新用户注册赠送积分活动 783686
科研通“疑难数据库(出版商)”最低求助积分说明 750427