Recent Trends in Computer-aided Drug Design for Anti-cancer Drug Discovery

药物发现 药品 癌症 计算机科学 药物开发 抗癌药 计算生物学 精密医学 临床试验 生物信息学 医学 药理学 生物 病理 内科学
作者
Iashia Tur Razia,Ayesha Kanwal,Hafiza Fatima Riaz,Abbeha Malik,Muhammad Ahsan,Muhammad Saleem Khan,Ali Raza,Sumera Sabir,Zureesha Sajid,Muhammad Fardeen Khan,Rana Adnan Tahir,Sheikh Arslan Sehgal
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science]
卷期号:23 (30): 2844-2862 被引量:5
标识
DOI:10.2174/0115680266258467231107102643
摘要

Abstract: Cancer is considered one of the deadliest diseases globally, and continuous research is being carried out to find novel potential therapies for myriad cancer types that affect the human body. Researchers are hunting for innovative remedies to minimize the toxic effects of conventional therapies being driven by cancer, which is emerging as pivotal causes of mortality worldwide. Cancer progression steers the formation of heterogeneous behavior, including self-sustaining proliferation, malignancy, and evasion of apoptosis, tissue invasion, and metastasis of cells inside the tumor with distinct molecular features. The complexity of cancer therapeutics demands advanced approaches to comprehend the underlying mechanisms and potential therapies. Precision medicine and cancer therapies both rely on drug discovery. In vitro drug screening and in vivo animal trials are the mainstays of traditional approaches for drug development; however, both techniques are laborious and expensive. Omics data explosion in the last decade has made it possible to discover efficient anti-cancer drugs via computational drug discovery approaches. Computational techniques such as computer-aided drug design have become an essential drug discovery tool and a keystone for novel drug development methods. In this review, we seek to provide an overview of computational drug discovery procedures comprising the target sites prediction, drug discovery based on structure and ligand-based design, quantitative structure-activity relationship (QSAR), molecular docking calculations, and molecular dynamics simulations with a focus on cancer therapeutics. The applications of artificial intelligence, databases, and computational tools in drug discovery procedures, as well as successfully computationally designed drugs, have been discussed to highlight the significance and recent trends in drug discovery against cancer. The current review describes the advanced computer-aided drug design methods that would be helpful in the designing of novel cancer therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定幻嫣完成签到 ,获得积分10
1秒前
Fred Guan应助科科采纳,获得100
2秒前
韭菜盒子发布了新的文献求助10
3秒前
脑洞疼应助马婧芸采纳,获得10
7秒前
溪鱼完成签到,获得积分10
7秒前
8秒前
温柔寄文完成签到,获得积分10
8秒前
Tacamily完成签到,获得积分10
11秒前
十斤芒果关注了科研通微信公众号
12秒前
Maths发布了新的文献求助30
12秒前
科研通AI2S应助韭菜盒子采纳,获得10
13秒前
不配.应助韭菜盒子采纳,获得10
13秒前
丘比特应助韭菜盒子采纳,获得10
13秒前
这不得行完成签到 ,获得积分10
14秒前
14秒前
哇哒西蛙发布了新的文献求助10
16秒前
kingwhitewing完成签到,获得积分10
16秒前
薄荷完成签到,获得积分10
17秒前
友好亚男完成签到 ,获得积分10
17秒前
airsh发布了新的文献求助10
18秒前
VDC发布了新的文献求助30
19秒前
21秒前
23秒前
端庄的未来完成签到,获得积分10
23秒前
zjq完成签到,获得积分10
23秒前
XCY发布了新的文献求助10
24秒前
Maths完成签到,获得积分10
25秒前
25秒前
airsh完成签到,获得积分20
27秒前
耍酷的断缘完成签到,获得积分20
27秒前
28秒前
29秒前
马婧芸发布了新的文献求助10
29秒前
31秒前
bird完成签到 ,获得积分10
32秒前
愉快的若云应助麻薯头头采纳,获得10
33秒前
张秋雨发布了新的文献求助10
34秒前
彬墩墩完成签到,获得积分10
34秒前
机灵冰珍发布了新的文献求助20
35秒前
十斤芒果发布了新的文献求助10
36秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137758
求助须知:如何正确求助?哪些是违规求助? 2788672
关于积分的说明 7787968
捐赠科研通 2445026
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043