The integration of Model Predictive Control and deep Reinforcement Learning for efficient thermal control in thermoforming processes

热成型 材料科学 模型预测控制 强化学习 钢筋 热的 控制(管理) 机械工程 复合材料 计算机科学 人工智能 工程类 热力学 物理
作者
Hadi Hosseinionari,Rudolf Seethaler
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:115: 82-93 被引量:3
标识
DOI:10.1016/j.jmapro.2024.01.085
摘要

This paper presents an approach to integrate Model Predictive Control (MPC) and deep Reinforcement Learning (RL) to improve the efficiency in radiation thermal control systems, specifically in the heating phase of the thermoforming process where a considerable number of radiation heating elements are used as actuators. Because of the large action and state spaces in such systems, the exploration process during the agent training takes a long time. The strategy in this paper employs an MPC to guide and expedite the training process of deep RL agents. While MPC performs optimally with well-defined models and can handle constraints, it requires that model parameters stay constant over time and its online computational burden is notable, especially in systems with extensive action and state spaces. The Proposed approach leverages the predictive capabilities of MPC to provide an external action input that can guide the deep RL agent's exploration and learning process. Hence, at the end of the training process, the trained agent will perform close to optimally while its online computational burden is very low compared to MPC. In our designed heating system, this hybrid method dramatically accelerates learning, achieving a remarkable 100-fold increase in average episode rewards during training compared to traditional deep RL techniques. Furthermore, the trained agent is not only robust to environmental disturbances, but its online computing burden is 14 times lower than that of MPC. This approach stands as a promising solution for efficient and effective thermal control in industrial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖果完成签到 ,获得积分10
1秒前
1秒前
Lucas应助白洛寒采纳,获得10
1秒前
yuan发布了新的文献求助10
2秒前
2秒前
所所应助lx采纳,获得10
2秒前
zyc发布了新的文献求助10
2秒前
寒梅恋雪完成签到 ,获得积分10
3秒前
长之欠发布了新的文献求助10
4秒前
俏皮皮带关注了科研通微信公众号
4秒前
科研通AI6应助阿肖呀采纳,获得10
5秒前
7秒前
nan11发布了新的文献求助10
7秒前
7秒前
8秒前
tian完成签到,获得积分10
8秒前
水蜜桃完成签到 ,获得积分10
8秒前
RED发布了新的文献求助10
11秒前
11秒前
13秒前
GingerF应助Liu采纳,获得50
13秒前
lms发布了新的文献求助10
13秒前
14秒前
我爱睡觉完成签到,获得积分20
14秒前
15秒前
16秒前
气球洋洋完成签到,获得积分10
16秒前
16秒前
16秒前
18秒前
jiejie321发布了新的文献求助10
19秒前
19秒前
我爱睡觉发布了新的文献求助10
19秒前
彭于晏应助老仙翁采纳,获得30
19秒前
Jasper应助Marshzz采纳,获得10
19秒前
wsy发布了新的文献求助30
20秒前
20秒前
酷炫绾绾完成签到,获得积分10
21秒前
俏皮皮带发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578739
求助须知:如何正确求助?哪些是违规求助? 4663520
关于积分的说明 14747032
捐赠科研通 4604483
什么是DOI,文献DOI怎么找? 2526947
邀请新用户注册赠送积分活动 1496563
关于科研通互助平台的介绍 1465838