The integration of Model Predictive Control and deep Reinforcement Learning for efficient thermal control in thermoforming processes

热成型 材料科学 模型预测控制 强化学习 钢筋 热的 控制(管理) 机械工程 复合材料 计算机科学 人工智能 工程类 热力学 物理
作者
Hadi Hosseinionari,Rudolf Seethaler
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:115: 82-93 被引量:3
标识
DOI:10.1016/j.jmapro.2024.01.085
摘要

This paper presents an approach to integrate Model Predictive Control (MPC) and deep Reinforcement Learning (RL) to improve the efficiency in radiation thermal control systems, specifically in the heating phase of the thermoforming process where a considerable number of radiation heating elements are used as actuators. Because of the large action and state spaces in such systems, the exploration process during the agent training takes a long time. The strategy in this paper employs an MPC to guide and expedite the training process of deep RL agents. While MPC performs optimally with well-defined models and can handle constraints, it requires that model parameters stay constant over time and its online computational burden is notable, especially in systems with extensive action and state spaces. The Proposed approach leverages the predictive capabilities of MPC to provide an external action input that can guide the deep RL agent's exploration and learning process. Hence, at the end of the training process, the trained agent will perform close to optimally while its online computational burden is very low compared to MPC. In our designed heating system, this hybrid method dramatically accelerates learning, achieving a remarkable 100-fold increase in average episode rewards during training compared to traditional deep RL techniques. Furthermore, the trained agent is not only robust to environmental disturbances, but its online computing burden is 14 times lower than that of MPC. This approach stands as a promising solution for efficient and effective thermal control in industrial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
happy完成签到,获得积分10
刚刚
刚刚
脑洞疼应助专一的摩托车采纳,获得10
刚刚
彭于晏应助芯止谭轩采纳,获得10
1秒前
小白完成签到,获得积分10
2秒前
2秒前
yuyukeke发布了新的文献求助10
2秒前
Rivers发布了新的文献求助30
3秒前
Dimple完成签到,获得积分10
3秒前
学术骗子小刚完成签到,获得积分0
4秒前
动听梨愁发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助陌上之心采纳,获得10
5秒前
科研通AI6应助绒裤病毒采纳,获得10
6秒前
6秒前
小屋完成签到,获得积分10
8秒前
赘婿应助虚幻百川采纳,获得10
8秒前
丽丽完成签到,获得积分20
9秒前
9秒前
所所应助慈祥的鑫采纳,获得10
9秒前
10秒前
dengdengdeng完成签到 ,获得积分10
10秒前
LKT发布了新的文献求助10
10秒前
清秀向雁发布了新的文献求助10
10秒前
10秒前
11秒前
13秒前
huhdcid发布了新的文献求助200
14秒前
hyscoll发布了新的文献求助10
14秒前
小马甲应助联润翔采纳,获得10
15秒前
LKT完成签到,获得积分10
15秒前
16秒前
syh发布了新的文献求助10
16秒前
万能图书馆应助yuyukeke采纳,获得10
16秒前
和光同尘完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
东郭一斩完成签到,获得积分10
18秒前
李健的小迷弟应助ydfqlzj采纳,获得20
19秒前
koui完成签到 ,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530913
求助须知:如何正确求助?哪些是违规求助? 4619898
关于积分的说明 14570675
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913