The integration of Model Predictive Control and deep Reinforcement Learning for efficient thermal control in thermoforming processes

热成型 材料科学 模型预测控制 强化学习 钢筋 热的 控制(管理) 机械工程 复合材料 计算机科学 人工智能 工程类 热力学 物理
作者
Hadi Hosseinionari,Rudolf Seethaler
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:115: 82-93 被引量:3
标识
DOI:10.1016/j.jmapro.2024.01.085
摘要

This paper presents an approach to integrate Model Predictive Control (MPC) and deep Reinforcement Learning (RL) to improve the efficiency in radiation thermal control systems, specifically in the heating phase of the thermoforming process where a considerable number of radiation heating elements are used as actuators. Because of the large action and state spaces in such systems, the exploration process during the agent training takes a long time. The strategy in this paper employs an MPC to guide and expedite the training process of deep RL agents. While MPC performs optimally with well-defined models and can handle constraints, it requires that model parameters stay constant over time and its online computational burden is notable, especially in systems with extensive action and state spaces. The Proposed approach leverages the predictive capabilities of MPC to provide an external action input that can guide the deep RL agent's exploration and learning process. Hence, at the end of the training process, the trained agent will perform close to optimally while its online computational burden is very low compared to MPC. In our designed heating system, this hybrid method dramatically accelerates learning, achieving a remarkable 100-fold increase in average episode rewards during training compared to traditional deep RL techniques. Furthermore, the trained agent is not only robust to environmental disturbances, but its online computing burden is 14 times lower than that of MPC. This approach stands as a promising solution for efficient and effective thermal control in industrial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
传奇3应助kiddchow采纳,获得20
1秒前
王云云发布了新的文献求助10
1秒前
Zxj完成签到,获得积分20
1秒前
huyz发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
优馨完成签到,获得积分10
3秒前
silence发布了新的文献求助10
3秒前
爱喝佳得乐完成签到,获得积分10
3秒前
3秒前
段嘉迪完成签到 ,获得积分10
3秒前
3秒前
生动不平发布了新的文献求助10
3秒前
3秒前
pengnanhao完成签到,获得积分10
3秒前
了解完成签到,获得积分10
3秒前
lll发布了新的文献求助10
3秒前
斯文败类应助Runostp采纳,获得10
4秒前
兰亭序发布了新的文献求助10
4秒前
mukou发布了新的文献求助10
5秒前
5秒前
一叶应助sure采纳,获得10
5秒前
5秒前
任性雨筠发布了新的文献求助10
5秒前
小熊发布了新的文献求助20
5秒前
ssch197发布了新的文献求助10
6秒前
搜集达人应助YY88687321采纳,获得10
6秒前
英勇的向日葵完成签到,获得积分20
6秒前
6秒前
世世世给世世世的求助进行了留言
6秒前
6秒前
6秒前
竞鹤发布了新的文献求助10
6秒前
刘可完成签到 ,获得积分10
6秒前
耳朵先生完成签到,获得积分10
7秒前
hanli1991关注了科研通微信公众号
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498