The integration of Model Predictive Control and deep Reinforcement Learning for efficient thermal control in thermoforming processes

热成型 材料科学 模型预测控制 强化学习 钢筋 热的 控制(管理) 机械工程 复合材料 计算机科学 人工智能 工程类 热力学 物理
作者
Hadi Hosseinionari,Rudolf Seethaler
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:115: 82-93 被引量:3
标识
DOI:10.1016/j.jmapro.2024.01.085
摘要

This paper presents an approach to integrate Model Predictive Control (MPC) and deep Reinforcement Learning (RL) to improve the efficiency in radiation thermal control systems, specifically in the heating phase of the thermoforming process where a considerable number of radiation heating elements are used as actuators. Because of the large action and state spaces in such systems, the exploration process during the agent training takes a long time. The strategy in this paper employs an MPC to guide and expedite the training process of deep RL agents. While MPC performs optimally with well-defined models and can handle constraints, it requires that model parameters stay constant over time and its online computational burden is notable, especially in systems with extensive action and state spaces. The Proposed approach leverages the predictive capabilities of MPC to provide an external action input that can guide the deep RL agent's exploration and learning process. Hence, at the end of the training process, the trained agent will perform close to optimally while its online computational burden is very low compared to MPC. In our designed heating system, this hybrid method dramatically accelerates learning, achieving a remarkable 100-fold increase in average episode rewards during training compared to traditional deep RL techniques. Furthermore, the trained agent is not only robust to environmental disturbances, but its online computing burden is 14 times lower than that of MPC. This approach stands as a promising solution for efficient and effective thermal control in industrial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助幸运鹅采纳,获得10
4秒前
幽默依凝完成签到,获得积分10
4秒前
5秒前
5秒前
小马甲应助可爱绮采纳,获得10
5秒前
Prejudice3发布了新的文献求助10
8秒前
SciGPT应助ZHI采纳,获得10
11秒前
青山完成签到 ,获得积分10
12秒前
金黎发布了新的文献求助10
12秒前
欢呼靳完成签到 ,获得积分10
12秒前
机智的灵萱完成签到,获得积分10
12秒前
君衡完成签到 ,获得积分10
15秒前
微暖完成签到,获得积分0
19秒前
Xjx6519发布了新的文献求助10
20秒前
墨染完成签到,获得积分10
22秒前
32秒前
hh发布了新的文献求助10
36秒前
Prejudice3完成签到,获得积分10
37秒前
Jere发布了新的文献求助20
41秒前
金黎完成签到,获得积分20
44秒前
ICBC完成签到 ,获得积分10
45秒前
NexusExplorer应助天玄采纳,获得10
47秒前
科研通AI2S应助Solkatt采纳,获得10
47秒前
ccc完成签到,获得积分10
48秒前
wylwyl完成签到,获得积分10
54秒前
muky关注了科研通微信公众号
54秒前
Lucas应助通天塔采纳,获得80
54秒前
endoscopy发布了新的文献求助10
55秒前
57秒前
shhoing应助超级王国采纳,获得10
58秒前
Owen应助来杯冰美式采纳,获得10
1分钟前
CipherSage应助卢志帅采纳,获得10
1分钟前
Wiesen发布了新的文献求助10
1分钟前
1分钟前
星辰大海应助feiyang采纳,获得10
1分钟前
大方夏瑶关注了科研通微信公众号
1分钟前
通天塔发布了新的文献求助80
1分钟前
1分钟前
大个应助越明年采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668834
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514585
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523