The integration of Model Predictive Control and deep Reinforcement Learning for efficient thermal control in thermoforming processes

热成型 材料科学 模型预测控制 强化学习 钢筋 热的 控制(管理) 机械工程 复合材料 计算机科学 人工智能 工程类 热力学 物理
作者
Hadi Hosseinionari,Rudolf Seethaler
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:115: 82-93 被引量:3
标识
DOI:10.1016/j.jmapro.2024.01.085
摘要

This paper presents an approach to integrate Model Predictive Control (MPC) and deep Reinforcement Learning (RL) to improve the efficiency in radiation thermal control systems, specifically in the heating phase of the thermoforming process where a considerable number of radiation heating elements are used as actuators. Because of the large action and state spaces in such systems, the exploration process during the agent training takes a long time. The strategy in this paper employs an MPC to guide and expedite the training process of deep RL agents. While MPC performs optimally with well-defined models and can handle constraints, it requires that model parameters stay constant over time and its online computational burden is notable, especially in systems with extensive action and state spaces. The Proposed approach leverages the predictive capabilities of MPC to provide an external action input that can guide the deep RL agent's exploration and learning process. Hence, at the end of the training process, the trained agent will perform close to optimally while its online computational burden is very low compared to MPC. In our designed heating system, this hybrid method dramatically accelerates learning, achieving a remarkable 100-fold increase in average episode rewards during training compared to traditional deep RL techniques. Furthermore, the trained agent is not only robust to environmental disturbances, but its online computing burden is 14 times lower than that of MPC. This approach stands as a promising solution for efficient and effective thermal control in industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴啦啦发布了新的文献求助10
刚刚
1秒前
optical发布了新的文献求助10
1秒前
充电宝应助几米的漫画99采纳,获得10
2秒前
2秒前
3秒前
3秒前
不周山修猫完成签到,获得积分10
3秒前
半夏微凉发布了新的文献求助10
3秒前
3秒前
胡楠完成签到,获得积分20
3秒前
超级大猩猩完成签到,获得积分10
4秒前
4秒前
空调蕉太狼关注了科研通微信公众号
4秒前
destiny完成签到,获得积分10
5秒前
希望天下0贩的0应助ZHa0采纳,获得30
6秒前
zj发布了新的文献求助10
6秒前
四喜发布了新的文献求助10
7秒前
冬月十梦完成签到,获得积分10
7秒前
92626完成签到,获得积分10
7秒前
7秒前
丽莉发布了新的文献求助10
7秒前
keyanli发布了新的文献求助10
7秒前
萌新完成签到,获得积分10
8秒前
hua发布了新的文献求助30
8秒前
边边玥铭发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
绛羽镜发布了新的文献求助10
10秒前
淡淡十三完成签到,获得积分10
10秒前
10秒前
胡楠发布了新的文献求助10
11秒前
WNL发布了新的文献求助10
11秒前
李健应助鲁彦华采纳,获得10
12秒前
12秒前
科研通AI2S应助丽莉采纳,获得10
12秒前
半夏微凉完成签到,获得积分20
12秒前
在水一方应助一只小西瓜采纳,获得10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169392
求助须知:如何正确求助?哪些是违规求助? 2820584
关于积分的说明 7931656
捐赠科研通 2480996
什么是DOI,文献DOI怎么找? 1321620
科研通“疑难数据库(出版商)”最低求助积分说明 633287
版权声明 602528