The integration of Model Predictive Control and deep Reinforcement Learning for efficient thermal control in thermoforming processes

热成型 材料科学 模型预测控制 强化学习 钢筋 热的 控制(管理) 机械工程 复合材料 计算机科学 人工智能 工程类 热力学 物理
作者
Hadi Hosseinionari,Rudolf Seethaler
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:115: 82-93 被引量:3
标识
DOI:10.1016/j.jmapro.2024.01.085
摘要

This paper presents an approach to integrate Model Predictive Control (MPC) and deep Reinforcement Learning (RL) to improve the efficiency in radiation thermal control systems, specifically in the heating phase of the thermoforming process where a considerable number of radiation heating elements are used as actuators. Because of the large action and state spaces in such systems, the exploration process during the agent training takes a long time. The strategy in this paper employs an MPC to guide and expedite the training process of deep RL agents. While MPC performs optimally with well-defined models and can handle constraints, it requires that model parameters stay constant over time and its online computational burden is notable, especially in systems with extensive action and state spaces. The Proposed approach leverages the predictive capabilities of MPC to provide an external action input that can guide the deep RL agent's exploration and learning process. Hence, at the end of the training process, the trained agent will perform close to optimally while its online computational burden is very low compared to MPC. In our designed heating system, this hybrid method dramatically accelerates learning, achieving a remarkable 100-fold increase in average episode rewards during training compared to traditional deep RL techniques. Furthermore, the trained agent is not only robust to environmental disturbances, but its online computing burden is 14 times lower than that of MPC. This approach stands as a promising solution for efficient and effective thermal control in industrial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hony完成签到,获得积分10
3秒前
斯文败类应助郭子仪采纳,获得30
3秒前
4秒前
Thien应助lyp采纳,获得10
4秒前
4秒前
yyanxuemin919发布了新的文献求助10
5秒前
研友_Lmb15n发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
上帝粒子应助Liu采纳,获得50
8秒前
李伟峰完成签到,获得积分10
8秒前
9秒前
wy发布了新的文献求助10
9秒前
冷酷莫言发布了新的文献求助10
10秒前
qwer发布了新的文献求助10
10秒前
11秒前
嘿嘿发布了新的文献求助10
11秒前
jiabu完成签到 ,获得积分10
12秒前
学术费物发布了新的文献求助10
12秒前
12秒前
律香川照之完成签到,获得积分10
14秒前
看100篇文献完成签到,获得积分10
15秒前
sylus发布了新的文献求助10
16秒前
太兰完成签到 ,获得积分10
17秒前
wang完成签到,获得积分20
17秒前
18秒前
spc68应助chen采纳,获得10
18秒前
英姑应助暗中讨饭采纳,获得10
21秒前
只争朝夕应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
22秒前
wanci应助科研通管家采纳,获得10
22秒前
领导范儿应助qwer采纳,获得10
22秒前
22秒前
22秒前
22秒前
无尘发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432