Harnessing synthetic data for enhanced detection of Pine Wilt Disease: An image classification approach

枯萎病 人工智能 模式识别(心理学) 计算机科学 上下文图像分类 支持向量机 图像(数学) 机器学习 数据挖掘 计算机视觉 遥感 地理 生物 植物
作者
Yong-Hoon Jung,Sanghyun Byun,Bumsoo Kim,Sareer Ul Amin,Sanghyun Seo
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108690-108690
标识
DOI:10.1016/j.compag.2024.108690
摘要

Pine Wilt Disease (PWD) is a devastating disease that affects forest ecosystems and has no known cure. Early detection is essential for suppressing infections of PWD. Recent efforts have focused on leveraging deep learning-based algorithms for the early detection of PWD. However, data collection, labeling, and quality assurance for such a method are costly and challenging. Particularly for PWD, the data collection period is limited, restricting the diversity of the dataset. To overcome these challenges, this paper introduces a virtual forest considering PWD created using 3D rendering tools, from which we built a synthetic dataset. Furthermore, to ensure the resemblance of the synthetic data to the real data, we employed Image-to-Image (I2I) translation techniques. We used the EfficientNetv2-S model to compare the results from each dataset. We were able to confirm the potential of our model trained solely on the PWD synthetic dataset for real PWD detection. Moreover, the model trained on an ensemble comprising both real and synthetic data exhibited improved performance, achieving an F1 Score of 92.88%. Using the I2I translation technique for an ensemble of real and synthetic data also demonstrated enhanced performance. This result confirms the validity and practicality of the synthetic data proposed in this study. The findings of this study are expected to contribute to the broader forest ecosystem preservation and agricultural management by extending to other forest disease detection and agricultural fields. Details of our dataset and code are available at https://github.com/dydgns2017/PWD-Synthetic-Dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助居选金采纳,获得10
1秒前
风清扬发布了新的文献求助10
3秒前
十一发布了新的文献求助10
3秒前
4秒前
4秒前
平淡的天宇给福崽的求助进行了留言
5秒前
希望天下0贩的0应助Alan采纳,获得10
5秒前
sa完成签到,获得积分10
6秒前
四月77发布了新的文献求助10
6秒前
罗白翠完成签到,获得积分10
8秒前
是鑫鑫发布了新的文献求助20
10秒前
心有猛虎发布了新的文献求助10
10秒前
11秒前
sa发布了新的文献求助10
11秒前
13秒前
十一完成签到,获得积分10
13秒前
18秒前
18秒前
19秒前
所所应助Zhukic采纳,获得10
19秒前
19秒前
科研通AI2S应助博修采纳,获得10
19秒前
drfwjuikesv完成签到,获得积分10
19秒前
21秒前
霸气南珍发布了新的文献求助10
21秒前
21秒前
NexusExplorer应助Yh采纳,获得10
22秒前
FAN发布了新的文献求助10
24秒前
CAOHOU应助幽默泥猴桃采纳,获得10
24秒前
25秒前
追风完成签到,获得积分10
26秒前
Alan发布了新的文献求助10
26秒前
28秒前
Ava应助勇敢牛牛采纳,获得10
28秒前
28秒前
FAN完成签到,获得积分10
30秒前
30秒前
葡萄嘎嘣发布了新的文献求助10
31秒前
天天下雨完成签到 ,获得积分10
32秒前
李健应助蜂蜜采纳,获得10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962835
求助须知:如何正确求助?哪些是违规求助? 3508752
关于积分的说明 11142844
捐赠科研通 3241587
什么是DOI,文献DOI怎么找? 1791624
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803540