Scientific machine learning for modeling and simulating complex fluids

计算机科学 本构方程 灵活性(工程) 人工智能 数学 有限元法 工程类 统计 结构工程
作者
Kyle R. Lennon,Gareth H. McKinley,James W. Swan
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (27) 被引量:19
标识
DOI:10.1073/pnas.2304669120
摘要

The formulation of rheological constitutive equations—models that relate internal stresses and deformations in complex fluids—is a critical step in the engineering of systems involving soft materials. While data-driven models provide accessible alternatives to expensive first-principles models and less accurate empirical models in many engineering disciplines, the development of similar models for complex fluids has lagged. The diversity of techniques for characterizing non-Newtonian fluid dynamics creates a challenge for classical machine learning approaches, which require uniformly structured training data. Consequently, early machine-learning based constitutive equations have not been portable between different deformation protocols or mechanical observables. Here, we present a data-driven framework that resolves such issues, allowing rheologists to construct learnable models that incorporate essential physical information, while remaining agnostic to details regarding particular experimental protocols or flow kinematics. These scientific machine learning models incorporate a universal approximator within a materially objective tensorial constitutive framework. By construction, these models respect physical constraints, such as frame-invariance and tensor symmetry, required by continuum mechanics. We demonstrate that this framework facilitates the rapid discovery of accurate constitutive equations from limited data and that the learned models may be used to describe more kinematically complex flows. This inherent flexibility admits the application of these “digital fluid twins” to a range of material systems and engineering problems. We illustrate this flexibility by deploying a trained model within a multidimensional computational fluid dynamics simulation—a task that is not achievable using any previously developed data-driven rheological equation of state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
humengxiao完成签到,获得积分10
1秒前
1秒前
周小贝贝完成签到,获得积分10
1秒前
李爱国应助孔涛采纳,获得10
2秒前
韩大大完成签到,获得积分10
2秒前
潇洒台灯完成签到,获得积分10
3秒前
3秒前
Joshua完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
12发布了新的文献求助10
4秒前
4秒前
5秒前
xumengyu发布了新的文献求助10
6秒前
7秒前
leoan完成签到,获得积分10
7秒前
zcz完成签到,获得积分10
7秒前
kimlian完成签到,获得积分10
8秒前
8秒前
萧晓完成签到 ,获得积分20
8秒前
9秒前
fff发布了新的文献求助10
9秒前
zcz发布了新的文献求助10
9秒前
Ava应助zz采纳,获得10
10秒前
10秒前
kimlian发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
睡到人间煮饭时完成签到,获得积分10
13秒前
13秒前
14秒前
赘婿应助科研通管家采纳,获得10
15秒前
marg应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
枫泾完成签到,获得积分10
15秒前
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得100
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662106
求助须知:如何正确求助?哪些是违规求助? 3223001
关于积分的说明 9749628
捐赠科研通 2932748
什么是DOI,文献DOI怎么找? 1605829
邀请新用户注册赠送积分活动 758164
科研通“疑难数据库(出版商)”最低求助积分说明 734712