卷积(计算机科学)
简单(哲学)
计算机科学
计算复杂性理论
二次方程
算法
图像(数学)
GSM演进的增强数据速率
数学优化
对象(语法)
人工智能
数学
几何学
哲学
认识论
人工神经网络
作者
Yongguang Zhai,Jing Hao,Liang Gao,Xinyu Li,Yanyan Gao,Shumin Han
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2307.12018
摘要
The hybrid model of self-attention and convolution is one of the methods to lighten ViT. The quadratic computational complexity of self-attention with respect to token length limits the efficiency of ViT on edge devices. We propose a self-attention approximation without training parameters, called SPSA, which captures global spatial features with linear complexity. To verify the effectiveness of SPSA combined with convolution, we conduct extensive experiments on image classification and object detection tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI