作者
Janine Ziemons,Lars Hillege,Romy Aarnoutse,Judith de Vos‐Geelen,Liselot Valkenburg‐van Iersel,Jasper Mastenbroek,Robin M.J.M. van Geel,David Barnett,Sander S. Rensen,Ardy van Helvoort,Lotte H. J. Dopheide,Guus Roeselers,John Penders,Marjolein L. Smidt,Koen Venema
摘要
Abstract Background 5-Fluorouracil (5-FU) is used as an antineoplastic agent in distinct cancer types. Increasing evidence suggests that the gut microbiota might modulate 5-FU efficacy and toxicity, potentially affecting the patient’s prognosis. The current experimental study investigated 5-FU-induced microbiota alterations, as well as the potential of prebiotic fibre mixtures (M1-M4) to counteract these shifts. Methods A pooled microbial consortium was derived from ten healthy donors, inoculated in an in vitro model of the colon, and treated with 5-FU, with or without prebiotic fibre mixtures for 72 h. Four different prebiotic fibre mixtures were tested: M1 containing short-chain galacto-oligosaccharides (sc GOS), long-chain fructo-oligosaccharides (lcFOS), and low viscosity pectin (lvPect), M2 consisting of arabinoxylan, beta-glucan, pectin, and resistant starch, M3 which was a mixture of scGOS and lcFOS, and M4 containing arabinoxylan, beta-glucan, pectin, resistant starch, and inulin. Results We identified 5-FU-induced changes in gut microbiota composition, but not in microbial diversity. Administration of prebiotic fibre mixtures during 5-FU influenced gut microbiota composition and taxa abundance. Amongst others, prebiotic fibre mixtures successfully stimulated potentially beneficial bacteria ( Bifidobacterium , Lactobacillus, Anaerostipes, Weissella , Olsenella , Senegalimassilia ) and suppressed the growth of potentially pathogenic bacteria ( Klebsiella , Enterobacter ) in the presence of 5-FU. The short-chain fatty acid (SCFA) acetate increased slightly during 5-FU, but even more during 5-FU with prebiotic fibre mixtures, while propionate was lower due to 5-FU with or without prebiotic fibre mixtures, compared to control. The SCFA butyrate and valerate did not show differences among all conditions. The branched-chain fatty acids (BCFA) iso-butyrate and iso-valerate were higher in 5-FU, but lower in 5-FU + prebiotics, compared to control. Conclusions These data suggest that prebiotic fibre mixtures represent a promising strategy to modulate 5-FU-induced microbial dysbiosis towards a more favourable microbiota, thereby possibly improving 5-FU efficacy and reducing toxicity, which should be evaluated further in clinical studies.