Toward DNN of LUTs: Learning Efficient Image Restoration with Multiple Look-Up Tables

人工智能 计算机科学 图像复原 计算机视觉 图像(数学) 图像处理 模式识别(心理学)
作者
Jiacheng Li,Chang Chen,Zhen Cheng,Zhiwei Xiong
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3401048
摘要

The widespread usage of high-definition screens on edge devices stimulates a strong demand for efficient image restoration algorithms. The way of caching deep learning models in a look-up table (LUT) is recently introduced to respond to this demand. However, the size of a single LUT grows exponentially with the increase of its indexing capacity, which restricts its receptive field and thus the performance. To overcome this intrinsic limitation of the single-LUT solution, we propose a universal method to construct multiple LUTs like a neural network, termed MuLUT. Firstly, we devise novel complementary indexing patterns, as well as a general implementation for arbitrary patterns, to construct multiple LUTs in parallel. Secondly, we propose a re-indexing mechanism to enable hierarchical indexing between cascaded LUTs. Finally, we introduce channel indexing to allow cross-channel interaction, enabling LUTs to process color channels jointly. In these principled ways, the total size of MuLUT is linear to its indexing capacity, yielding a practical solution to obtain superior performance with the enlarged receptive field. We examine the advantage of MuLUT on various image restoration tasks, including super-resolution, demosaicing, denoising, and deblocking. MuLUT achieves a significant improvement over the single-LUT solution, e.g., up to 1.1dB PSNR for super-resolution and up to 2.8dB PSNR for grayscale denoising, while preserving its efficiency, which is 100× less in energy cost compared with lightweight deep neural networks. Our code and trained models are publicly available at https://github.com/ddlee-cn/MuLUT .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyzhang完成签到,获得积分10
刚刚
研友_VZG7GZ应助new采纳,获得10
1秒前
1秒前
852应助neko采纳,获得10
1秒前
墨晟蘅完成签到,获得积分10
1秒前
1秒前
兴奋的果汁完成签到,获得积分10
2秒前
加油小李完成签到 ,获得积分10
2秒前
淡然鸡翅完成签到,获得积分10
3秒前
3秒前
ningning完成签到,获得积分20
4秒前
Orange应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
mhl11应助科研通管家采纳,获得10
4秒前
4秒前
Cassie应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
陌陌应助科研通管家采纳,获得10
5秒前
keKEYANTONG应助科研通管家采纳,获得10
5秒前
mhl11应助科研通管家采纳,获得10
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
TORGO完成签到,获得积分10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
mhl11应助科研通管家采纳,获得10
6秒前
XxxxxxG完成签到,获得积分10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
LuoYR@SZU发布了新的文献求助10
6秒前
淡淡芷天完成签到,获得积分10
6秒前
咖啡怪人发布了新的文献求助10
7秒前
wendy.lv完成签到,获得积分10
7秒前
8秒前
yywlx发布了新的文献求助10
10秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265978
求助须知:如何正确求助?哪些是违规求助? 2905826
关于积分的说明 8335519
捐赠科研通 2576203
什么是DOI,文献DOI怎么找? 1400372
科研通“疑难数据库(出版商)”最低求助积分说明 654755
邀请新用户注册赠送积分活动 633556