Time‐Series MR Images Identifying Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning Approach

磁共振成像 乳腺癌 人工智能 医学 深度学习 新辅助治疗 人口 计算机科学 癌症 核医学 放射科 内科学 环境卫生
作者
Jialing Liu,Li Xu,Gang Wang,Weixiong Zeng,Hui Zeng,Chanjuan Wen,Weimin Xu,Zilong He,Genggeng Qin,Weiguo Chen
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29405
摘要

Background Pathological complete response (pCR) is an essential criterion for adjusting follow‐up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short‐term memory (VGG‐LSTM) network using time‐series dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) for pCR identification in BC is unclear. Purpose To identify pCR to neoadjuvant chemotherapy (NAC) using deep learning (DL) models based on the VGG‐LSTM network. Study Type Retrospective. Population Center A: 235 patients (47.7 ± 10.0 years) were divided 7:3 into training ( n = 164) and validation set ( n = 71). Center B: 150 patients (48.5 ± 10.4 years) were used as test set. Field Strength/Sequence 3‐T, T2‐weighted spin‐echo sequence imaging, and gradient echo DCE sequence imaging. Assessment Patients underwent MRI examinations at three sequential time points: pretreatment, after three cycles of treatment, and prior to surgery, with tumor regions of interest manually delineated. Histopathology was the gold standard. We used VGG‐LSTM network to establish seven DL models using time‐series DCE‐MR images: pre‐NAC images (t0 model), early NAC images (t1 model), post‐NAC images (t2 model), pre‐NAC and early NAC images (t0 + t1 model), pre‐NAC and post‐NAC images (t0 + t2 model), pre‐NAC, early NAC and post‐NAC images (t0 + t1 + t2 model), and the optimal model combined with the clinical features and imaging features (combined model). The models were trained and optimized on the training and validation set, and tested on the test set. Statistical Tests The DeLong, Student's t ‐test, Mann–Whitney U, Chi‐squared, Fisher's exact, Hosmer–Lemeshow tests, decision curve analysis, and receiver operating characteristics analysis were performed. P < 0.05 was considered significant. Results Compared with the other six models, the combined model achieved the best performance in the test set yielding an AUC of 0.927. Data Conclusion The combined model that used time‐series DCE‐MR images, clinical features and imaging features shows promise for identifying pCR in BC. Level of Evidence 4. Technical Efficacy Stage 4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ryan完成签到,获得积分10
3秒前
General完成签到 ,获得积分10
3秒前
谦让汝燕完成签到,获得积分10
5秒前
wellyou完成签到,获得积分10
6秒前
mint完成签到,获得积分10
8秒前
afli完成签到 ,获得积分0
11秒前
12秒前
Yy完成签到 ,获得积分10
15秒前
Nayvue发布了新的文献求助10
17秒前
feng完成签到,获得积分10
17秒前
淡淡的小蘑菇完成签到 ,获得积分10
20秒前
G_Serron完成签到,获得积分10
21秒前
swordshine完成签到,获得积分10
21秒前
Anonymous完成签到,获得积分10
25秒前
medzhou完成签到,获得积分10
29秒前
儒雅的千秋完成签到,获得积分10
37秒前
普鲁卡因发布了新的文献求助10
40秒前
小雯完成签到,获得积分10
41秒前
搞怪梦寒完成签到,获得积分20
42秒前
喵了个咪完成签到 ,获得积分10
43秒前
mc完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助10
48秒前
49秒前
49秒前
虚幻谷波完成签到,获得积分10
51秒前
ruochenzu发布了新的文献求助10
54秒前
小马甲应助搞怪梦寒采纳,获得10
56秒前
firewood完成签到 ,获得积分10
57秒前
天天快乐应助普鲁卡因采纳,获得10
59秒前
orixero应助NXK采纳,获得10
59秒前
bjr完成签到 ,获得积分10
1分钟前
研友_LwlAgn完成签到,获得积分10
1分钟前
陈昊完成签到,获得积分10
1分钟前
1分钟前
tian发布了新的文献求助10
1分钟前
1分钟前
1分钟前
龙舞星完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022