Time‐Series MR Images Identifying Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning Approach

磁共振成像 乳腺癌 人工智能 医学 深度学习 新辅助治疗 人口 计算机科学 癌症 核医学 放射科 内科学 环境卫生
作者
Jialing Liu,Li Xu,Gang Wang,Weixiong Zeng,Hui Zeng,Chanjuan Wen,Weimin Xu,Zilong He,Genggeng Qin,Weiguo Chen
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29405
摘要

Background Pathological complete response (pCR) is an essential criterion for adjusting follow‐up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short‐term memory (VGG‐LSTM) network using time‐series dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) for pCR identification in BC is unclear. Purpose To identify pCR to neoadjuvant chemotherapy (NAC) using deep learning (DL) models based on the VGG‐LSTM network. Study Type Retrospective. Population Center A: 235 patients (47.7 ± 10.0 years) were divided 7:3 into training ( n = 164) and validation set ( n = 71). Center B: 150 patients (48.5 ± 10.4 years) were used as test set. Field Strength/Sequence 3‐T, T2‐weighted spin‐echo sequence imaging, and gradient echo DCE sequence imaging. Assessment Patients underwent MRI examinations at three sequential time points: pretreatment, after three cycles of treatment, and prior to surgery, with tumor regions of interest manually delineated. Histopathology was the gold standard. We used VGG‐LSTM network to establish seven DL models using time‐series DCE‐MR images: pre‐NAC images (t0 model), early NAC images (t1 model), post‐NAC images (t2 model), pre‐NAC and early NAC images (t0 + t1 model), pre‐NAC and post‐NAC images (t0 + t2 model), pre‐NAC, early NAC and post‐NAC images (t0 + t1 + t2 model), and the optimal model combined with the clinical features and imaging features (combined model). The models were trained and optimized on the training and validation set, and tested on the test set. Statistical Tests The DeLong, Student's t ‐test, Mann–Whitney U, Chi‐squared, Fisher's exact, Hosmer–Lemeshow tests, decision curve analysis, and receiver operating characteristics analysis were performed. P < 0.05 was considered significant. Results Compared with the other six models, the combined model achieved the best performance in the test set yielding an AUC of 0.927. Data Conclusion The combined model that used time‐series DCE‐MR images, clinical features and imaging features shows promise for identifying pCR in BC. Level of Evidence 4. Technical Efficacy Stage 4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
称心嵩发布了新的文献求助10
4秒前
zsy完成签到,获得积分10
5秒前
7秒前
7秒前
Bamboo完成签到 ,获得积分10
7秒前
8秒前
Bill完成签到 ,获得积分10
8秒前
laowuzheng发布了新的文献求助50
9秒前
妙脆角完成签到,获得积分10
9秒前
10秒前
YJL发布了新的文献求助10
10秒前
kelly发布了新的文献求助10
12秒前
橘子汽水完成签到 ,获得积分10
12秒前
Hello应助自信的宝贝采纳,获得10
13秒前
祖金杰发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
16秒前
辜陈乐应助毓凡采纳,获得10
16秒前
科研小趴菜完成签到 ,获得积分10
17秒前
17秒前
jay发布了新的文献求助10
18秒前
Parotodus完成签到,获得积分10
18秒前
19秒前
星辰大海应助TiAmo采纳,获得10
20秒前
yao发布了新的文献求助30
20秒前
CHEN完成签到,获得积分10
20秒前
烟花应助xiaoshu采纳,获得10
21秒前
朴素勒完成签到 ,获得积分10
21秒前
ltft发布了新的文献求助10
22秒前
单薄俊驰发布了新的文献求助10
22秒前
Demon发布了新的文献求助10
22秒前
帅哥完成签到,获得积分10
24秒前
慕青应助Fengliguantou采纳,获得10
29秒前
Demon完成签到,获得积分10
29秒前
Bluebulu完成签到 ,获得积分10
29秒前
今后应助科研通管家采纳,获得10
31秒前
orixero应助科研通管家采纳,获得10
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046