Time‐Series MR Images Identifying Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning Approach

磁共振成像 乳腺癌 人工智能 医学 深度学习 新辅助治疗 人口 计算机科学 癌症 核医学 放射科 内科学 环境卫生
作者
Jialing Liu,Li Xu,Gang Wang,Weixiong Zeng,Hui Zeng,Chanjuan Wen,Weimin Xu,Zilong He,Genggeng Qin,Weiguo Chen
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29405
摘要

Background Pathological complete response (pCR) is an essential criterion for adjusting follow‐up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short‐term memory (VGG‐LSTM) network using time‐series dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) for pCR identification in BC is unclear. Purpose To identify pCR to neoadjuvant chemotherapy (NAC) using deep learning (DL) models based on the VGG‐LSTM network. Study Type Retrospective. Population Center A: 235 patients (47.7 ± 10.0 years) were divided 7:3 into training ( n = 164) and validation set ( n = 71). Center B: 150 patients (48.5 ± 10.4 years) were used as test set. Field Strength/Sequence 3‐T, T2‐weighted spin‐echo sequence imaging, and gradient echo DCE sequence imaging. Assessment Patients underwent MRI examinations at three sequential time points: pretreatment, after three cycles of treatment, and prior to surgery, with tumor regions of interest manually delineated. Histopathology was the gold standard. We used VGG‐LSTM network to establish seven DL models using time‐series DCE‐MR images: pre‐NAC images (t0 model), early NAC images (t1 model), post‐NAC images (t2 model), pre‐NAC and early NAC images (t0 + t1 model), pre‐NAC and post‐NAC images (t0 + t2 model), pre‐NAC, early NAC and post‐NAC images (t0 + t1 + t2 model), and the optimal model combined with the clinical features and imaging features (combined model). The models were trained and optimized on the training and validation set, and tested on the test set. Statistical Tests The DeLong, Student's t ‐test, Mann–Whitney U, Chi‐squared, Fisher's exact, Hosmer–Lemeshow tests, decision curve analysis, and receiver operating characteristics analysis were performed. P < 0.05 was considered significant. Results Compared with the other six models, the combined model achieved the best performance in the test set yielding an AUC of 0.927. Data Conclusion The combined model that used time‐series DCE‐MR images, clinical features and imaging features shows promise for identifying pCR in BC. Level of Evidence 4. Technical Efficacy Stage 4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助TiAmo采纳,获得10
刚刚
森森完成签到,获得积分10
2秒前
IM小红旗发布了新的文献求助10
3秒前
3秒前
3秒前
斯文败类应助鱼猫采纳,获得10
4秒前
共享精神应助简单又夏采纳,获得10
5秒前
5秒前
华仔应助lllooo采纳,获得10
6秒前
xkx101完成签到,获得积分10
7秒前
orixero应助沐风采纳,获得10
7秒前
T_KYG发布了新的文献求助10
8秒前
9秒前
好大的晒发布了新的文献求助10
9秒前
浮游应助st采纳,获得10
10秒前
浮游应助st采纳,获得10
10秒前
Jasper应助危机的雍采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
FashionBoy应助icey采纳,获得10
12秒前
桐桐应助Rgly采纳,获得10
13秒前
Lucas应助子清采纳,获得10
13秒前
要减肥的书蕾关注了科研通微信公众号
13秒前
Akim应助无量采纳,获得10
13秒前
14秒前
华仔应助蘑菇腿采纳,获得10
15秒前
15秒前
香蕉觅云应助TiAmo采纳,获得10
15秒前
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得100
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424545
求助须知:如何正确求助?哪些是违规求助? 4538904
关于积分的说明 14164157
捐赠科研通 4455851
什么是DOI,文献DOI怎么找? 2443924
邀请新用户注册赠送积分活动 1435060
关于科研通互助平台的介绍 1412438