Time‐Series MR Images Identifying Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning Approach

磁共振成像 乳腺癌 人工智能 医学 深度学习 新辅助治疗 人口 计算机科学 癌症 核医学 放射科 内科学 环境卫生
作者
Jialing Liu,Li Xu,Gang Wang,Weixiong Zeng,Hui Zeng,Chanjuan Wen,Weimin Xu,Zilong He,Genggeng Qin,Weiguo Chen
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29405
摘要

Background Pathological complete response (pCR) is an essential criterion for adjusting follow‐up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short‐term memory (VGG‐LSTM) network using time‐series dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) for pCR identification in BC is unclear. Purpose To identify pCR to neoadjuvant chemotherapy (NAC) using deep learning (DL) models based on the VGG‐LSTM network. Study Type Retrospective. Population Center A: 235 patients (47.7 ± 10.0 years) were divided 7:3 into training ( n = 164) and validation set ( n = 71). Center B: 150 patients (48.5 ± 10.4 years) were used as test set. Field Strength/Sequence 3‐T, T2‐weighted spin‐echo sequence imaging, and gradient echo DCE sequence imaging. Assessment Patients underwent MRI examinations at three sequential time points: pretreatment, after three cycles of treatment, and prior to surgery, with tumor regions of interest manually delineated. Histopathology was the gold standard. We used VGG‐LSTM network to establish seven DL models using time‐series DCE‐MR images: pre‐NAC images (t0 model), early NAC images (t1 model), post‐NAC images (t2 model), pre‐NAC and early NAC images (t0 + t1 model), pre‐NAC and post‐NAC images (t0 + t2 model), pre‐NAC, early NAC and post‐NAC images (t0 + t1 + t2 model), and the optimal model combined with the clinical features and imaging features (combined model). The models were trained and optimized on the training and validation set, and tested on the test set. Statistical Tests The DeLong, Student's t ‐test, Mann–Whitney U, Chi‐squared, Fisher's exact, Hosmer–Lemeshow tests, decision curve analysis, and receiver operating characteristics analysis were performed. P < 0.05 was considered significant. Results Compared with the other six models, the combined model achieved the best performance in the test set yielding an AUC of 0.927. Data Conclusion The combined model that used time‐series DCE‐MR images, clinical features and imaging features shows promise for identifying pCR in BC. Level of Evidence 4. Technical Efficacy Stage 4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
4秒前
大米完成签到,获得积分10
4秒前
5秒前
5秒前
ty发布了新的文献求助10
7秒前
田様应助不安的小刺猬采纳,获得10
9秒前
damian完成签到,获得积分10
9秒前
JamesPei应助Fengh采纳,获得10
9秒前
WD发布了新的文献求助10
9秒前
善良天抒发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助30
11秒前
11秒前
xiaojinyu发布了新的文献求助10
12秒前
zxh完成签到,获得积分10
12秒前
14秒前
天天快乐应助obsidian_virgo采纳,获得10
14秒前
15秒前
15秒前
大白完成签到,获得积分10
15秒前
Qiancheng完成签到,获得积分10
15秒前
Owen应助刘YF采纳,获得10
16秒前
ccmaxp发布了新的文献求助10
17秒前
17秒前
ZhaoPeng发布了新的文献求助10
18秒前
一袋薯片发布了新的文献求助10
18秒前
18秒前
gcl应助zwk采纳,获得30
18秒前
19秒前
Owen应助Elhsin_Karte采纳,获得10
20秒前
星辰大海应助善良天抒采纳,获得10
21秒前
jmn完成签到,获得积分10
22秒前
苳苳完成签到 ,获得积分10
22秒前
123发布了新的文献求助10
22秒前
涂山苏苏发布了新的文献求助10
22秒前
Fengh发布了新的文献求助10
23秒前
瓜头发布了新的文献求助10
23秒前
李健应助西NO米娅采纳,获得10
25秒前
一袋薯片完成签到,获得积分10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975543
求助须知:如何正确求助?哪些是违规求助? 3519971
关于积分的说明 11200248
捐赠科研通 3256311
什么是DOI,文献DOI怎么找? 1798213
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806338