Three-Dimensional (3D) deep learning model complements existing models for preoperative disease-free survival prediction (DFS) in localized clear cell renal cell carcinoma (ccRCC): A multicenter retrospective cohort study

医学 肾透明细胞癌 分布式文件系统 内科学 队列 危险分层 肾细胞癌 回顾性队列研究 肿瘤科 弗雷明翰风险评分 病态的 疾病 计算机安全 计算机科学
作者
Yingjie Xv,Zongjie Wei,Qingwu Jiang,Xuan Zhang,Yong Chen,Bangxin Xiao,Siwen Yin,Zongyu Xia,Ming Qiu,Yang Li,Hao Tan,Mingzhao Xiao
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000001808
摘要

Background: Current prognostic models have limited predictive abilities for the growing number of localized (stage I-III) ccRCCs. It is therefore crucial to explore novel preoperative recurrence prediction models to accurately stratify patients and optimize clinical decisions. This purpose of this study was to develop and externally validate a CT-based deep learning (DL) model for pre-surgical disease-free survival (DFS) prediction. Methods: Patients with localized ccRCC were retrospectively enrolled from six independent medical centers. Three-dimensional (3D) tumor regions from CT images were utilized as input to architect a ResNet 50 model, which outputted DL computed risk score (DLCR) of each patient for DFS prediction later. The predictive performance of DLCR was assessed and compared to the radiomics model (Rad-Score), clinical model we built and two existing prognostic models (UISS and Leibovich). The complementary value of DLCR to the UISS, Leibovich, as well as Rad-Score were evaluated by stratified analysis. Results: 707 patients with localized ccRCC were finally enrolled for models’ training and validating. The DLCR we established can perfectly stratify patients into low-, intermediate- and high-risks, and outperformed the Rad-Score, clinical model, UISS and Leibovich score in DFS prediction, with a C-index of 0.754 (0.689-0.821) in the external testing set. Furthermore, the DLCR presented excellent risk stratification capacity in subgroups defined by almost all clinic-pathological features. Moreover, patients in the UISS/Leibovich score/Rad-Score stratified low-risk but DLCR-defined intermediate- and high-risk groups were significantly more likely to experience ccRCC recurrences than those of intermediate- and high-risk in DLCR determined low-risk (all Log-rank P values<0.05). Conclusions: Our deep learning model, derived from preoperative CT, is superior to radiomics and current models in precisely DFS predicting of localized ccRCC, and can provide complementary values to them, which may assist more informed clinical decisions and adjuvant therapies adoptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溜了溜了完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
daheeeee发布了新的文献求助10
2秒前
zyyyyyy发布了新的文献求助10
3秒前
celinekk发布了新的文献求助20
5秒前
狄从灵发布了新的文献求助10
5秒前
5秒前
newboy_wxs完成签到,获得积分10
5秒前
iu两个废物i俄国完成签到 ,获得积分10
6秒前
6秒前
蘇q发布了新的文献求助10
7秒前
小马甲应助IAMXC采纳,获得10
8秒前
123完成签到,获得积分10
9秒前
10秒前
10秒前
fd163c完成签到,获得积分10
11秒前
芦苇发布了新的文献求助10
11秒前
哎哟很烦完成签到,获得积分10
12秒前
12秒前
Jasper应助oo采纳,获得10
13秒前
小蘑菇应助lz采纳,获得30
14秒前
英俊的铭应助高工采纳,获得10
14秒前
15秒前
科研通AI2S应助yukkii采纳,获得10
15秒前
f峰哥发布了新的文献求助20
15秒前
fd163c发布了新的文献求助10
16秒前
1234发布了新的文献求助10
16秒前
打打应助力口氵由采纳,获得10
16秒前
16秒前
cccc完成签到,获得积分10
16秒前
HEIKU应助JaneChen采纳,获得10
16秒前
18秒前
18秒前
大脸小唐发布了新的文献求助10
18秒前
康子的爹完成签到,获得积分10
19秒前
Orange应助周子强采纳,获得10
19秒前
xiaotutu发布了新的文献求助10
20秒前
张高兴发布了新的文献求助10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655