A Tumoral and Peritumoral CT-Based Radiomics and Machine Learning Approach to Predict the Microsatellite Instability of Rectal Carcinoma

列线图 接收机工作特性 医学 随机森林 逻辑回归 置信区间 人工智能 朴素贝叶斯分类器 无线电技术 机器学习 放射科 算法 肿瘤科 支持向量机 计算机科学 内科学
作者
Hang Yuan,Peng Yu,Xiren Xu,Shiliang Tu,Yuguo Wei,Yanqing Ma
出处
期刊:Cancer management and research [Dove Medical Press]
卷期号:Volume 14: 2409-2418 被引量:10
标识
DOI:10.2147/cmar.s377138
摘要

Objective: To predict the status of microsatellite instability (MSI) of rectal carcinoma (RC) using different machine learning algorithms based on tumoral and peritumoral radiomics combined with clinicopathological characteristics.Methods: There were 497 RC patients enrolled in this retrospective study.The tumoral and peritumoral CT-based radiomic features were calculated after tumor segmentation.The radiomic features from two radiologists were compared by way of inter-observer correlation coefficient (ICC).After methods of variance, correlation, and dimension reduction, six machine learning algorithms of logistic regression (LR), Bayes, support vector machine, random forest, k-nearest neighbor, and decision tree were conducted to develop models for predicting MSI status of RC.The relative standard deviation (RSD) was quantified.The radiomics and significant clinicopathological variables constituted the radiomics-clinicopathological nomogram.The receiver operator curve (ROC) was made by DeLong test, and the area under curve (AUC) with 95% confidence interval (95% CI) was calculated to evaluate the performance of the model. Results:The venous phase of CT examination was selected for further analysis because the proportion of radiomic features with ICC greater than 0.75 was higher.The tumoral and peritumoral model by LR algorithm (M-LR) with minimal RSD showed good performance in predicting MSI status of RC with the AUCs of 0.817 and 0.726 in the training and validation set.The radiomicclinicopathological nomogram performed better in both the training and validation set with AUCs of 0.843 and 0.737. Conclusion:The radiomics-clinicopathological nomogram demonstrated better predictive performance in evaluating the MSI status of RC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
sun发布了新的文献求助10
3秒前
科目三应助ggappsong采纳,获得10
3秒前
4秒前
不准吃烤肉完成签到,获得积分10
4秒前
cc完成签到,获得积分10
4秒前
乐乐应助东东呀采纳,获得10
5秒前
道友且慢发布了新的文献求助20
6秒前
7秒前
csy发布了新的文献求助10
8秒前
jisujun发布了新的文献求助10
9秒前
12秒前
桐桐应助yyy采纳,获得10
12秒前
Goodluck完成签到 ,获得积分10
12秒前
今后应助glanceofwind采纳,获得10
13秒前
14秒前
欣然如风完成签到,获得积分20
15秒前
李健应助geen采纳,获得10
15秒前
pingping完成签到,获得积分10
16秒前
17秒前
orixero应助稳重的手机采纳,获得10
18秒前
19秒前
xiuquan完成签到,获得积分10
19秒前
欣然如风发布了新的文献求助10
19秒前
19秒前
20秒前
释怀完成签到,获得积分10
21秒前
烟花应助优雅柏柳采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
yangling0124发布了新的文献求助10
23秒前
所所应助zorro3574采纳,获得10
23秒前
火星上的曼彤完成签到 ,获得积分10
24秒前
儒雅的冷松完成签到,获得积分10
25秒前
yyy发布了新的文献求助10
25秒前
赵一樽完成签到,获得积分10
26秒前
xiaoww发布了新的文献求助10
26秒前
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021