A Tumoral and Peritumoral CT-Based Radiomics and Machine Learning Approach to Predict the Microsatellite Instability of Rectal Carcinoma

列线图 接收机工作特性 医学 随机森林 逻辑回归 置信区间 人工智能 朴素贝叶斯分类器 无线电技术 机器学习 放射科 算法 肿瘤科 支持向量机 计算机科学 内科学
作者
Hang Yuan,Peng Yu,Xiren Xu,Shiliang Tu,Yuguo Wei,Yanqing Ma
出处
期刊:Cancer management and research [Dove Medical Press]
卷期号:Volume 14: 2409-2418 被引量:10
标识
DOI:10.2147/cmar.s377138
摘要

Objective: To predict the status of microsatellite instability (MSI) of rectal carcinoma (RC) using different machine learning algorithms based on tumoral and peritumoral radiomics combined with clinicopathological characteristics.Methods: There were 497 RC patients enrolled in this retrospective study.The tumoral and peritumoral CT-based radiomic features were calculated after tumor segmentation.The radiomic features from two radiologists were compared by way of inter-observer correlation coefficient (ICC).After methods of variance, correlation, and dimension reduction, six machine learning algorithms of logistic regression (LR), Bayes, support vector machine, random forest, k-nearest neighbor, and decision tree were conducted to develop models for predicting MSI status of RC.The relative standard deviation (RSD) was quantified.The radiomics and significant clinicopathological variables constituted the radiomics-clinicopathological nomogram.The receiver operator curve (ROC) was made by DeLong test, and the area under curve (AUC) with 95% confidence interval (95% CI) was calculated to evaluate the performance of the model. Results:The venous phase of CT examination was selected for further analysis because the proportion of radiomic features with ICC greater than 0.75 was higher.The tumoral and peritumoral model by LR algorithm (M-LR) with minimal RSD showed good performance in predicting MSI status of RC with the AUCs of 0.817 and 0.726 in the training and validation set.The radiomicclinicopathological nomogram performed better in both the training and validation set with AUCs of 0.843 and 0.737. Conclusion:The radiomics-clinicopathological nomogram demonstrated better predictive performance in evaluating the MSI status of RC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容芮应助lruri张采纳,获得10
刚刚
xmfffff发布了新的文献求助10
2秒前
飘逸晓曼发布了新的文献求助10
2秒前
Hello应助雪糕采纳,获得10
2秒前
木语发布了新的文献求助10
3秒前
暖暖完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
6秒前
小饼饼完成签到,获得积分10
6秒前
ding应助WCX采纳,获得10
6秒前
三岁完成签到,获得积分10
6秒前
zy发布了新的文献求助10
7秒前
重要的炳发布了新的文献求助10
11秒前
兜有米发布了新的文献求助10
11秒前
12秒前
强健的绮琴完成签到,获得积分10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
HEIKU应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
鲸鱼应助科研通管家采纳,获得10
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
风中的丝袜完成签到,获得积分10
13秒前
小龅牙吖发布了新的文献求助10
13秒前
桐桐应助鳎mu采纳,获得30
13秒前
华老五完成签到,获得积分10
14秒前
14秒前
机智的衣完成签到,获得积分10
14秒前
华安完成签到,获得积分10
15秒前
15秒前
搜集达人应助激昂的君浩采纳,获得10
16秒前
迢迢笙箫应助lungCA采纳,获得50
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150225
求助须知:如何正确求助?哪些是违规求助? 2801322
关于积分的说明 7844073
捐赠科研通 2458853
什么是DOI,文献DOI怎么找? 1308673
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721