Damages Detection of Aeroengine Blades via Deep Learning Algorithms

计算机科学 损害赔偿 人工智能 算法 工程类 政治学 法学
作者
Shuangbao Li,Jingyi Yu,Hao Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:28
标识
DOI:10.1109/tim.2023.3249247
摘要

To solve the problem of detecting the damages of aeroengine blades in harsh environments and reduce the aviation safety hazards caused by visual reasons, such as careless observation and delayed reporting of blade damages, the detection model of damages for aeroengine blades via deep learning algorithms is proposed in this article. First, the gamma correction method is used to process the dataset captured by the borescope to enhance the characterization ability. Second, the improved convolutional block attention module (CBAM) is embedded into the head and the end of backbone network of the YOLOv7 model. Meanwhile, a branch is added to the channel attention module of CBAM to optimize its network structure. Finally, in order to improve the accuracy and convergence speed, complete intersection over union $\rm (CIOU)$ is replaced by $\rm Alpha_{-}GIOU$ as a coordinate loss function in the YOLOv7 model, and a new flowchart of detection for aeroengine blade damages is proposed. Detection experiment results demonstrate that the mean average precision (mAP) of the improved YOLOv7 model in this article is 96.1%, which is 1.0% higher than the original model. The improved YOLOv7 module has remarkable effects compared with YOLOv5s, YOLOv4, single shot multibox detector (SSD), and Faster region-convolutional neural network (R-CNN) models. Meanwhile, the improved YOLOv7 model has better generalization performance, which provides a more reliable support for the real-time and visualization of damages detection of aeroengine blades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓜瓜完成签到,获得积分20
刚刚
1秒前
明亮灭绝发布了新的文献求助10
2秒前
2秒前
研友_nEoMy8发布了新的文献求助30
2秒前
2秒前
tRNA完成签到,获得积分10
2秒前
2秒前
lsw发布了新的文献求助10
3秒前
11完成签到,获得积分10
3秒前
机灵的波比完成签到,获得积分20
3秒前
4秒前
bkagyin应助小伏采纳,获得10
4秒前
4秒前
5秒前
情怀应助虚拟的乐松采纳,获得10
5秒前
6秒前
6秒前
6秒前
ShawnJohn发布了新的文献求助10
6秒前
7秒前
麻辣香锅完成签到,获得积分10
7秒前
Khalil发布了新的文献求助10
8秒前
正直的文涛完成签到 ,获得积分10
8秒前
liao_duoduo完成签到,获得积分10
8秒前
ily.发布了新的文献求助10
8秒前
科研通AI6应助吴婉秋采纳,获得10
8秒前
9秒前
10秒前
勤恳青亦发布了新的文献求助10
11秒前
11秒前
研友_VZG7GZ应助研友_nEoMy8采纳,获得10
11秒前
11秒前
小飞发布了新的文献求助10
11秒前
浪里小白龙完成签到,获得积分10
12秒前
12秒前
充电宝应助敏感狗采纳,获得10
13秒前
Lllleen完成签到 ,获得积分10
13秒前
13秒前
科研通AI6应助生动的以南采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939