Damages Detection of Aeroengine Blades via Deep Learning Algorithms

计算机科学 损害赔偿 人工智能 算法 工程类 政治学 法学
作者
Shuangbao Li,Jingyi Yu,Hao Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:28
标识
DOI:10.1109/tim.2023.3249247
摘要

To solve the problem of detecting the damages of aeroengine blades in harsh environments and reduce the aviation safety hazards caused by visual reasons, such as careless observation and delayed reporting of blade damages, the detection model of damages for aeroengine blades via deep learning algorithms is proposed in this article. First, the gamma correction method is used to process the dataset captured by the borescope to enhance the characterization ability. Second, the improved convolutional block attention module (CBAM) is embedded into the head and the end of backbone network of the YOLOv7 model. Meanwhile, a branch is added to the channel attention module of CBAM to optimize its network structure. Finally, in order to improve the accuracy and convergence speed, complete intersection over union $\rm (CIOU)$ is replaced by $\rm Alpha_{-}GIOU$ as a coordinate loss function in the YOLOv7 model, and a new flowchart of detection for aeroengine blade damages is proposed. Detection experiment results demonstrate that the mean average precision (mAP) of the improved YOLOv7 model in this article is 96.1%, which is 1.0% higher than the original model. The improved YOLOv7 module has remarkable effects compared with YOLOv5s, YOLOv4, single shot multibox detector (SSD), and Faster region-convolutional neural network (R-CNN) models. Meanwhile, the improved YOLOv7 model has better generalization performance, which provides a more reliable support for the real-time and visualization of damages detection of aeroengine blades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助lily采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
123发布了新的文献求助10
刚刚
下雨天完成签到,获得积分10
1秒前
cnmkyt完成签到,获得积分10
1秒前
1秒前
lll完成签到,获得积分10
1秒前
fj发布了新的文献求助10
2秒前
晓风残月发布了新的文献求助10
2秒前
科研通AI6应助henglu采纳,获得10
2秒前
3秒前
huangqian完成签到 ,获得积分10
4秒前
虚幻乐萱完成签到,获得积分20
5秒前
阳光谷完成签到,获得积分10
5秒前
申霄九云外完成签到,获得积分10
5秒前
5秒前
6秒前
知性的雪糕完成签到,获得积分10
6秒前
欣慰可愁完成签到,获得积分10
6秒前
qaz发布了新的文献求助10
6秒前
ChenYX发布了新的文献求助20
7秒前
专注的枫叶应助小小书童采纳,获得10
7秒前
聪明海云完成签到 ,获得积分20
7秒前
7秒前
小月亮完成签到 ,获得积分10
7秒前
华仔应助lq采纳,获得10
7秒前
7秒前
7秒前
Jerry完成签到,获得积分10
7秒前
Liusiqi发布了新的文献求助10
7秒前
科研通AI6应助大力的含烟采纳,获得10
9秒前
bhc186完成签到,获得积分10
9秒前
辉辉完成签到,获得积分10
9秒前
YZfeb24完成签到,获得积分10
9秒前
科研通AI6应助无心的天真采纳,获得10
10秒前
四喜格格完成签到,获得积分10
10秒前
啊哦完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597483
求助须知:如何正确求助?哪些是违规求助? 4682912
关于积分的说明 14827567
捐赠科研通 4660738
什么是DOI,文献DOI怎么找? 2536633
邀请新用户注册赠送积分活动 1504244
关于科研通互助平台的介绍 1470182