已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Damages Detection of Aeroengine Blades via Deep Learning Algorithms

计算机科学 损害赔偿 人工智能 算法 工程类 政治学 法学
作者
Shuangbao Li,Jingyi Yu,Hao Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:28
标识
DOI:10.1109/tim.2023.3249247
摘要

To solve the problem of detecting the damages of aeroengine blades in harsh environments and reduce the aviation safety hazards caused by visual reasons, such as careless observation and delayed reporting of blade damages, the detection model of damages for aeroengine blades via deep learning algorithms is proposed in this article. First, the gamma correction method is used to process the dataset captured by the borescope to enhance the characterization ability. Second, the improved convolutional block attention module (CBAM) is embedded into the head and the end of backbone network of the YOLOv7 model. Meanwhile, a branch is added to the channel attention module of CBAM to optimize its network structure. Finally, in order to improve the accuracy and convergence speed, complete intersection over union $\rm (CIOU)$ is replaced by $\rm Alpha_{-}GIOU$ as a coordinate loss function in the YOLOv7 model, and a new flowchart of detection for aeroengine blade damages is proposed. Detection experiment results demonstrate that the mean average precision (mAP) of the improved YOLOv7 model in this article is 96.1%, which is 1.0% higher than the original model. The improved YOLOv7 module has remarkable effects compared with YOLOv5s, YOLOv4, single shot multibox detector (SSD), and Faster region-convolutional neural network (R-CNN) models. Meanwhile, the improved YOLOv7 model has better generalization performance, which provides a more reliable support for the real-time and visualization of damages detection of aeroengine blades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
土豆你个西红柿完成签到 ,获得积分10
2秒前
许小六完成签到 ,获得积分10
2秒前
wy.he应助李四采纳,获得10
3秒前
碗在水中央完成签到 ,获得积分10
4秒前
天天快乐应助zyyy采纳,获得30
6秒前
7秒前
11秒前
领导范儿应助sunshine采纳,获得10
11秒前
Ryan_Lau完成签到 ,获得积分10
12秒前
13秒前
Alan发布了新的文献求助10
15秒前
chiien完成签到 ,获得积分10
16秒前
zcc完成签到,获得积分20
17秒前
初雪完成签到,获得积分10
19秒前
19秒前
独特纸飞机完成签到 ,获得积分10
21秒前
fhg完成签到,获得积分10
21秒前
22秒前
夜倾心完成签到,获得积分10
23秒前
MoonByMoon发布了新的文献求助10
24秒前
AI_Medical完成签到,获得积分10
24秒前
高兴醉薇完成签到 ,获得积分10
24秒前
粽子完成签到,获得积分10
26秒前
chen发布了新的文献求助10
27秒前
沉钧发布了新的文献求助10
29秒前
123456777完成签到 ,获得积分0
31秒前
FashionBoy应助MoonByMoon采纳,获得10
31秒前
我是老大应助开放道天采纳,获得10
32秒前
winnie完成签到,获得积分10
35秒前
顺顺顺应助孤独的小玉采纳,获得10
35秒前
lu2025发布了新的文献求助10
36秒前
葛子文完成签到 ,获得积分10
36秒前
在水一方应助沉钧采纳,获得10
36秒前
1nooooo完成签到 ,获得积分10
39秒前
精明玲完成签到 ,获得积分10
40秒前
LJL完成签到 ,获得积分10
40秒前
笨蛋搞笑女完成签到 ,获得积分10
41秒前
zhdhh完成签到,获得积分10
41秒前
大模型应助大喵采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639380
求助须知:如何正确求助?哪些是违规求助? 4747904
关于积分的说明 15006208
捐赠科研通 4797525
什么是DOI,文献DOI怎么找? 2563511
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482245