Damages Detection of Aeroengine Blades via Deep Learning Algorithms

计算机科学 损害赔偿 人工智能 算法 工程类 政治学 法学
作者
Shuangbao Li,Jingyi Yu,Hao Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:23
标识
DOI:10.1109/tim.2023.3249247
摘要

To solve the problem of detecting the damages of aeroengine blades in harsh environments and reduce the aviation safety hazards caused by visual reasons, such as careless observation and delayed reporting of blade damages, the detection model of damages for aeroengine blades via deep learning algorithms is proposed in this article. First, the gamma correction method is used to process the dataset captured by the borescope to enhance the characterization ability. Second, the improved convolutional block attention module (CBAM) is embedded into the head and the end of backbone network of the YOLOv7 model. Meanwhile, a branch is added to the channel attention module of CBAM to optimize its network structure. Finally, in order to improve the accuracy and convergence speed, complete intersection over union $\rm (CIOU)$ is replaced by $\rm Alpha_{-}GIOU$ as a coordinate loss function in the YOLOv7 model, and a new flowchart of detection for aeroengine blade damages is proposed. Detection experiment results demonstrate that the mean average precision (mAP) of the improved YOLOv7 model in this article is 96.1%, which is 1.0% higher than the original model. The improved YOLOv7 module has remarkable effects compared with YOLOv5s, YOLOv4, single shot multibox detector (SSD), and Faster region-convolutional neural network (R-CNN) models. Meanwhile, the improved YOLOv7 model has better generalization performance, which provides a more reliable support for the real-time and visualization of damages detection of aeroengine blades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助an采纳,获得10
刚刚
SYLH应助Master_Ye采纳,获得10
1秒前
川木发布了新的文献求助10
1秒前
1秒前
neinei完成签到,获得积分10
2秒前
文武贝完成签到,获得积分10
2秒前
3秒前
笑笑二儿发布了新的文献求助30
3秒前
彻底完成签到,获得积分10
4秒前
4秒前
5秒前
LingC完成签到,获得积分10
5秒前
zhongu发布了新的文献求助10
5秒前
优美忆彤完成签到,获得积分10
6秒前
完美世界应助sby19采纳,获得30
7秒前
打打应助夏梦园采纳,获得10
7秒前
7秒前
HBin完成签到,获得积分10
7秒前
明理丹云发布了新的文献求助10
8秒前
科研小白发布了新的文献求助10
9秒前
9秒前
re发布了新的文献求助10
10秒前
可爱访卉完成签到,获得积分10
10秒前
10秒前
小孙完成签到,获得积分10
12秒前
可爱访卉发布了新的文献求助30
12秒前
川木完成签到,获得积分10
13秒前
凌123发布了新的文献求助100
13秒前
小陈完成签到,获得积分10
13秒前
lulu发布了新的文献求助10
14秒前
GingerF应助shinn采纳,获得50
14秒前
阳光he完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
领导范儿应助明理夏槐采纳,获得10
15秒前
16秒前
17秒前
SYLH应助Master_Ye采纳,获得10
17秒前
VirSnorlax完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993