Damages Detection of Aeroengine Blades via Deep Learning Algorithms

计算机科学 损害赔偿 人工智能 算法 工程类 政治学 法学
作者
Shuangbao Li,Jingyi Yu,Hao Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:28
标识
DOI:10.1109/tim.2023.3249247
摘要

To solve the problem of detecting the damages of aeroengine blades in harsh environments and reduce the aviation safety hazards caused by visual reasons, such as careless observation and delayed reporting of blade damages, the detection model of damages for aeroengine blades via deep learning algorithms is proposed in this article. First, the gamma correction method is used to process the dataset captured by the borescope to enhance the characterization ability. Second, the improved convolutional block attention module (CBAM) is embedded into the head and the end of backbone network of the YOLOv7 model. Meanwhile, a branch is added to the channel attention module of CBAM to optimize its network structure. Finally, in order to improve the accuracy and convergence speed, complete intersection over union $\rm (CIOU)$ is replaced by $\rm Alpha_{-}GIOU$ as a coordinate loss function in the YOLOv7 model, and a new flowchart of detection for aeroengine blade damages is proposed. Detection experiment results demonstrate that the mean average precision (mAP) of the improved YOLOv7 model in this article is 96.1%, which is 1.0% higher than the original model. The improved YOLOv7 module has remarkable effects compared with YOLOv5s, YOLOv4, single shot multibox detector (SSD), and Faster region-convolutional neural network (R-CNN) models. Meanwhile, the improved YOLOv7 model has better generalization performance, which provides a more reliable support for the real-time and visualization of damages detection of aeroengine blades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QQ完成签到,获得积分10
刚刚
刚刚
小二郎应助ZSC采纳,获得10
1秒前
2秒前
靓丽不评发布了新的文献求助10
2秒前
共享精神应助仄言采纳,获得10
2秒前
ww完成签到 ,获得积分10
3秒前
qweerrtt完成签到,获得积分10
3秒前
3秒前
LZNUDT发布了新的文献求助10
3秒前
迷人雪碧发布了新的文献求助10
3秒前
lee发布了新的文献求助10
4秒前
点滴电镀完成签到,获得积分10
4秒前
826871896完成签到,获得积分20
5秒前
lu2025发布了新的文献求助10
5秒前
cs完成签到,获得积分10
5秒前
英姑应助WeOne采纳,获得10
6秒前
罗先生完成签到,获得积分20
6秒前
李健应助LZNUDT采纳,获得10
6秒前
放飞的羊驼完成签到,获得积分10
7秒前
8秒前
君无邪完成签到,获得积分10
8秒前
上官若男应助现代的谷南采纳,获得10
8秒前
9秒前
9秒前
小鹿呀完成签到,获得积分10
9秒前
syc发布了新的文献求助10
9秒前
含糊的丹彤完成签到,获得积分10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
个性的荆应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Zeee发布了新的文献求助10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
个性的荆应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652390
求助须知:如何正确求助?哪些是违规求助? 4787308
关于积分的说明 15059776
捐赠科研通 4810983
什么是DOI,文献DOI怎么找? 2573527
邀请新用户注册赠送积分活动 1529357
关于科研通互助平台的介绍 1488250