Damages Detection of Aeroengine Blades via Deep Learning Algorithms

计算机科学 损害赔偿 人工智能 算法 工程类 政治学 法学
作者
Shuangbao Li,Jingyi Yu,Hao Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:16
标识
DOI:10.1109/tim.2023.3249247
摘要

To solve the problem of detecting the damages of aeroengine blades in harsh environments and reduce the aviation safety hazards caused by visual reasons, such as careless observation and delayed reporting of blade damages, the detection model of damages for aeroengine blades via deep learning algorithms is proposed in this article. First, the gamma correction method is used to process the dataset captured by the borescope to enhance the characterization ability. Second, the improved convolutional block attention module (CBAM) is embedded into the head and the end of backbone network of the YOLOv7 model. Meanwhile, a branch is added to the channel attention module of CBAM to optimize its network structure. Finally, in order to improve the accuracy and convergence speed, complete intersection over union $\rm (CIOU)$ is replaced by $\rm Alpha_{-}GIOU$ as a coordinate loss function in the YOLOv7 model, and a new flowchart of detection for aeroengine blade damages is proposed. Detection experiment results demonstrate that the mean average precision (mAP) of the improved YOLOv7 model in this article is 96.1%, which is 1.0% higher than the original model. The improved YOLOv7 module has remarkable effects compared with YOLOv5s, YOLOv4, single shot multibox detector (SSD), and Faster region-convolutional neural network (R-CNN) models. Meanwhile, the improved YOLOv7 model has better generalization performance, which provides a more reliable support for the real-time and visualization of damages detection of aeroengine blades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
5秒前
meini完成签到 ,获得积分10
5秒前
starcatcher发布了新的文献求助10
6秒前
GK发布了新的文献求助10
8秒前
李健的小迷弟应助可乐采纳,获得30
8秒前
wxnice发布了新的文献求助10
9秒前
野性的易梦完成签到 ,获得积分10
12秒前
wanci应助研友_85Ymz8采纳,获得20
16秒前
17秒前
可爱的函函应助安逸1采纳,获得10
18秒前
19秒前
cing完成签到,获得积分10
21秒前
mhq发布了新的文献求助10
21秒前
Owen应助starcatcher采纳,获得10
22秒前
老实的栾完成签到,获得积分10
24秒前
26秒前
Orange应助mhq采纳,获得10
29秒前
PDIF-CN2完成签到,获得积分10
29秒前
Owen应助生动朝雪采纳,获得10
30秒前
31秒前
大个应助科研通管家采纳,获得10
33秒前
高大凌寒应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
无花果应助安逸1采纳,获得10
34秒前
可爱的香菇完成签到 ,获得积分10
38秒前
38秒前
阿盛完成签到,获得积分10
39秒前
39秒前
大模型应助郝宝真采纳,获得10
43秒前
打打应助GK采纳,获得10
44秒前
46秒前
ScholarZmm完成签到,获得积分10
46秒前
50秒前
51秒前
小蘑菇应助安逸1采纳,获得10
51秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816530
关于积分的说明 7913032
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388