清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CT image super-resolution reconstruction based on global hybrid attention

人工智能 计算机科学 模式识别(心理学) 特征(语言学) 冗余(工程) 计算机视觉 计算 卷积(计算机科学) 卷积神经网络 人工神经网络 算法 语言学 操作系统 哲学
作者
Jianning Chi,Zhiyi Sun,Huan Wang,Pengfei Lyu,Xiaosheng Yu,Chengdong Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106112-106112 被引量:16
标识
DOI:10.1016/j.compbiomed.2022.106112
摘要

Computer tomography (CT) has played an essential role in the field of medical diagnosis, but the blurry edges and unclear textures in traditional CT images usually interfere the subsequent judgement from radiologists or clinicians. Deep learning based image super-resolution methods have been applied for CT image restoration recently. However, different levels of information of CT image details are mixed and difficult to be mapped from deep features by traditional convolution operations. Moreover, features representing regions of interest (ROIs) in CT images are treated equally as those for background, resulting in low concentration of meaningful features and high redundancy of computation. To tackle these issues, a CT image super-resolution network is proposed based on hybrid attention mechanism and global feature fusion, which consists of the following three parts: 1) stacked Swin Transformer blocks are used as the backbone to extract initial features from the degraded CT image; 2) a multi-branch hierarchical self-attention module (MHSM) is proposed to adaptively map multi-level features representing different levels of image information from the initial features and establish the relationship between these features through a self-attention mechanism, where three branches apply different strategies of integrating convolution, down-sampling and up-sampling operations according to three different scale factors; 3) a multidimensional local topological feature enhancement module (MLTEM) is proposed and plugged into the end of the backbone to refine features in the channel and spatial dimension simultaneously, so that the features representing ROIs could be enhanced while meaningless ones eliminated. Experimental results demonstrate that our method outperform the state-of-the-art super-resolution methods on restoring CT images with respect to peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) indices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
1分钟前
ysssp完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
剑逍遥完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
digger2023完成签到 ,获得积分10
3分钟前
gwbk完成签到,获得积分10
4分钟前
5分钟前
共享精神应助丹布里采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
IlIIlIlIIIllI应助科研通管家采纳,获得20
5分钟前
大熊完成签到 ,获得积分10
6分钟前
Zzz完成签到,获得积分10
6分钟前
CipherSage应助Zzz采纳,获得10
6分钟前
mzhang2完成签到 ,获得积分10
6分钟前
7分钟前
小迪完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
丹布里发布了新的文献求助10
8分钟前
丹布里完成签到,获得积分10
8分钟前
梓歆完成签到 ,获得积分10
8分钟前
小强完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
dgcyjvfb完成签到,获得积分10
8分钟前
dgcyjvfb发布了新的文献求助10
8分钟前
沙海沉戈完成签到,获得积分0
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
宇文非笑完成签到 ,获得积分10
12分钟前
13分钟前
情怀应助wdasdas采纳,获得10
14分钟前
14分钟前
wdasdas发布了新的文献求助10
14分钟前
令狐子轩完成签到,获得积分10
14分钟前
无花果应助冷静的青文采纳,获得10
14分钟前
14分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003754
捐赠科研通 2734597
什么是DOI,文献DOI怎么找? 1500070
科研通“疑难数据库(出版商)”最低求助积分说明 693334
邀请新用户注册赠送积分活动 691477