Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network

人工智能 计算机科学 Softmax函数 卷积神经网络 分割 模式识别(心理学) 深度学习 特征(语言学) 模态(人机交互) 交叉熵 计算机视觉 语言学 哲学
作者
Xiangming Zhao,Laquan Li,Wei Lü,Shan Tan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:64 (1): 015011-015011 被引量:163
标识
DOI:10.1088/1361-6560/aaf44b
摘要

Automatic tumor segmentation from medical images is an important step for computer-aided cancer diagnosis and treatment. Recently, deep learning has been successfully applied to this task, leading to state-of-the-art performance. However, most of existing deep learning segmentation methods only work for a single imaging modality. PET/CT scanner is nowadays widely used in the clinic, and is able to provide both metabolic information and anatomical information through integrating PET and CT into the same utility. In this study, we proposed a novel multi-modality segmentation method based on a 3D fully convolutional neural network (FCN), which is capable of taking account of both PET and CT information simultaneously for tumor segmentation. The network started with a multi-task training module, in which two parallel sub-segmentation architectures constructed using deep convolutional neural networks (CNNs) were designed to automatically extract feature maps from PET and CT respectively. A feature fusion module was subsequently designed based on cascaded convolutional blocks, which re-extracted features from PET/CT feature maps using a weighted cross entropy minimization strategy. The tumor mask was obtained as the output at the end of the network using a softmax function. The effectiveness of the proposed method was validated on a clinic PET/CT dataset of 84 patients with lung cancer. The results demonstrated that the proposed network was effective, fast and robust and achieved significantly performance gain over CNN-based methods and traditional methods using PET or CT only, two V-net based co-segmentation methods, two variational co-segmentation methods based on fuzzy set theory and a deep learning co-segmentation method using W-net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dasfdufos发布了新的文献求助10
1秒前
搜集达人应助jari采纳,获得10
2秒前
zhuangzhu发布了新的文献求助10
2秒前
3秒前
yat完成签到 ,获得积分10
4秒前
所所应助carbon-dots采纳,获得10
4秒前
6秒前
6秒前
pluto应助SCIBUDDY采纳,获得20
6秒前
酷波er应助谷谷采纳,获得10
7秒前
lxf关注了科研通微信公众号
7秒前
dasfdufos完成签到,获得积分10
8秒前
8秒前
mkx发布了新的文献求助10
9秒前
奇异物质发布了新的文献求助10
10秒前
丘比特应助plh采纳,获得10
11秒前
11秒前
loin完成签到,获得积分10
12秒前
丘比特应助zyz采纳,获得10
12秒前
Zurlliant发布了新的文献求助10
13秒前
moci123完成签到 ,获得积分10
13秒前
13秒前
安子完成签到 ,获得积分10
14秒前
Felix发布了新的文献求助10
16秒前
乐观啤酒应助兴奋采梦采纳,获得10
17秒前
carbon-dots发布了新的文献求助10
19秒前
钟美莲完成签到,获得积分10
20秒前
乐观啤酒应助养蚊子采纳,获得10
20秒前
21秒前
22秒前
22秒前
lbh发布了新的文献求助10
25秒前
25秒前
plh发布了新的文献求助10
26秒前
27秒前
龙归大海完成签到,获得积分10
28秒前
lipel完成签到,获得积分10
28秒前
28秒前
paul发布了新的文献求助10
29秒前
不懈奋进应助VDC采纳,获得30
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901