Enhancement of Curve-Fitting Image Compression Using Hyperbolic Function

双曲函数 数学 JPEG格式 图像压缩 曲线拟合 切线 像素 图像处理 图像(数学) 算法 功能(生物学) 数据压缩 人工智能 计算机科学 数学分析 几何学 统计 生物 进化生物学
作者
Walaa Khalaf,Dhafer R. Zaghar,Noor Hazarina Hashim
出处
期刊:Symmetry [Multidisciplinary Digital Publishing Institute]
卷期号:11 (2): 291-291 被引量:13
标识
DOI:10.3390/sym11020291
摘要

Image compression is one of the most interesting fields of image processing that is used to reduce image size. 2D curve-fitting is a method that converts the image data (pixel values) to a set of mathematical equations that are used to represent the image. These equations have a fixed form with a few coefficients estimated from the image which has been divided into several blocks. Since the number of coefficients is lower than the original block pixel size, it can be used as a tool for image compression. In this paper, a new curve-fitting model has been proposed to be derived from the symmetric function (hyperbolic tangent) with only three coefficients. The main disadvantages of previous approaches were the additional errors and degradation of edges of the reconstructed image, as well as the blocking effect. To overcome this deficiency, it is proposed that this symmetric hyperbolic tangent (tanh) function be used instead of the classical 1st- and 2nd-order curve-fitting functions which are asymmetric for reformulating the blocks of the image. Depending on the symmetric property of hyperbolic tangent function, this will reduce the reconstruction error and improve fine details and texture of the reconstructed image. The results of this work have been tested and compared with 1st-order curve-fitting, and standard image compression (JPEG) methods. The main advantages of the proposed approach are: strengthening the edges of the image, removing the blocking effect, improving the Structural SIMilarity (SSIM) index, and increasing the Peak Signal-to-Noise Ratio (PSNR) up to 20 dB. Simulation results show that the proposed method has a significant improvement on the objective and subjective quality of the reconstructed image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渐入佳境完成签到,获得积分10
1秒前
哇wwwww完成签到,获得积分10
1秒前
小螃蟹完成签到 ,获得积分10
1秒前
000完成签到,获得积分20
1秒前
CodeCraft应助白衣轻叹采纳,获得10
1秒前
杜七七发布了新的文献求助10
1秒前
AH完成签到,获得积分20
2秒前
2秒前
aq发布了新的文献求助10
2秒前
2秒前
肖守玉完成签到,获得积分10
2秒前
邓佳鑫Alan发布了新的文献求助10
2秒前
3秒前
岗岗发布了新的文献求助10
3秒前
不安红豆完成签到,获得积分10
3秒前
appa发布了新的文献求助10
3秒前
4秒前
木心应助风清扬采纳,获得50
4秒前
吴一一发布了新的文献求助10
4秒前
5秒前
5秒前
Helix_Elaina发布了新的文献求助10
5秒前
sakuma完成签到,获得积分10
5秒前
王欧尼完成签到,获得积分10
6秒前
忽悠老羊完成签到 ,获得积分10
6秒前
6秒前
光123完成签到 ,获得积分10
6秒前
明理采珊完成签到,获得积分10
6秒前
YU完成签到,获得积分10
7秒前
白青发布了新的文献求助10
7秒前
喜悦向日葵完成签到 ,获得积分10
7秒前
7秒前
wzg666完成签到,获得积分10
8秒前
xsss完成签到,获得积分10
8秒前
娃哈哈发布了新的文献求助10
8秒前
斯文败类应助zhuzhu采纳,获得10
8秒前
默默的橘子完成签到 ,获得积分10
8秒前
CodeCraft应助心灵美采纳,获得30
9秒前
土豆子完成签到,获得积分10
9秒前
hhhhh应助娃娃鱼采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582