Stress-Enhanced Fear Learning, a Robust Rodent Model of Post-Traumatic Stress Disorder

恐惧条件反射 冻结行为 背景(考古学) 压力源 创伤应激 心理学 恐惧加剧惊吓 脆弱性(计算) 大脑中的恐惧处理 敏化 医学 神经科学 临床心理学 扁桃形结构 生物 计算机安全 计算机科学 古生物学
作者
Abha K. Rajbhandari,Sarah T. Gonzalez,Michael S. Fanselow
出处
期刊:Journal of Visualized Experiments [MyJoVE Corporation]
卷期号: (140) 被引量:34
标识
DOI:10.3791/58306
摘要

Fear behaviors are important for survival, but disproportionately high levels of fear can increase the vulnerability for developing psychiatric disorders such as post-traumatic stress disorder (PTSD). To understand the biological mechanisms of fear dysregulation in PTSD, it is important to start with a valid animal model of the disorder. This protocol describes the methodology required to conduct stress-enhanced fear learning (SEFL) experiments, a preclinical model of PTSD, in both rats and mice. SEFL was developed to recapitulate critical aspects of PTSD, including long-term sensitization of fear learning caused by an acute stressor. SEFL uses aspects of Pavlovian fear conditioning but produces a distinct and robust sensitized fear response far greater than normal conditional fear responses. The trauma procedure involves placing a rodent in a conditioning chamber and administering 15 unsignaled shocks randomly distributed over 90 minutes (for rat experiments; for mouse experiments, 10 unsignaled shocks randomly distributed over 60 minutes are used). On day 2, rodents are placed in a novel conditioning context where they receive a single shock; then, on day 3 they are placed back in the same context as on day 2 and tested for changes in freezing levels. Rodents that previously received the trauma display enhanced levels of freezing on the test day compared to those that received no shocks on the first day. Thus, with this model, a single highly stressful experience (the trauma) produces extreme fear of the stimuli associated with the traumatic event.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
番茄大王发布了新的文献求助10
刚刚
maitiandehe发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助Fern采纳,获得10
2秒前
2秒前
4秒前
番茄大王完成签到,获得积分10
7秒前
MOOTEA发布了新的文献求助10
8秒前
星辰大海应助大意的念芹采纳,获得10
8秒前
CipherSage应助Pumpkin采纳,获得10
8秒前
车剑锋完成签到,获得积分0
10秒前
10秒前
清秀凉面完成签到 ,获得积分10
10秒前
11秒前
和谐听白发布了新的文献求助10
12秒前
情怀应助x123采纳,获得10
12秒前
充电宝应助Yu采纳,获得10
13秒前
拼搏从凝完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
赘婿应助12采纳,获得10
15秒前
李健的小迷弟应助XudongHou采纳,获得30
16秒前
16秒前
16秒前
16秒前
MOOTEA完成签到,获得积分10
17秒前
文艺友绿完成签到,获得积分10
17秒前
微丶尘发布了新的文献求助10
17秒前
18秒前
liyu发布了新的文献求助10
18秒前
optical完成签到,获得积分10
19秒前
李键刚发布了新的文献求助10
20秒前
20秒前
离笼发布了新的文献求助10
21秒前
21秒前
康康完成签到,获得积分10
22秒前
科研豆包完成签到 ,获得积分10
22秒前
落叶发布了新的文献求助10
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457225
求助须知:如何正确求助?哪些是违规求助? 4563754
关于积分的说明 14291028
捐赠科研通 4488333
什么是DOI,文献DOI怎么找? 2458445
邀请新用户注册赠送积分活动 1448564
关于科研通互助平台的介绍 1424214