f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks

异常检测 人工智能 计算机科学 注释 模式识别(心理学) 源代码 特征(语言学) 残余物 机器学习 鉴别器 算法 语言学 电信 探测器 操作系统 哲学
作者
Thomas Schlegl,Philipp Seeböck,Sebastian M. Waldstein,Georg Langs,Ursula Schmidt‐Erfurth
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:54: 30-44 被引量:1068
标识
DOI:10.1016/j.media.2019.01.010
摘要

Obtaining expert labels in clinical imaging is difficult since exhaustive annotation is time-consuming. Furthermore, not all possibly relevant markers may be known and sufficiently well described a priori to even guide annotation. While supervised learning yields good results if expert labeled training data is available, the visual variability, and thus the vocabulary of findings, we can detect and exploit, is limited to the annotated lesions. Here, we present fast AnoGAN (f-AnoGAN), a generative adversarial network (GAN) based unsupervised learning approach capable of identifying anomalous images and image segments, that can serve as imaging biomarker candidates. We build a generative model of healthy training data, and propose and evaluate a fast mapping technique of new data to the GAN’s latent space. The mapping is based on a trained encoder, and anomalies are detected via a combined anomaly score based on the building blocks of the trained model – comprising a discriminator feature residual error and an image reconstruction error. In the experiments on optical coherence tomography data, we compare the proposed method with alternative approaches, and provide comprehensive empirical evidence that f-AnoGAN outperforms alternative approaches and yields high anomaly detection accuracy. In addition, a visual Turing test with two retina experts showed that the generated images are indistinguishable from real normal retinal OCT images. The f-AnoGAN code is available at https://github.com/tSchlegl/f-AnoGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
pennlee完成签到,获得积分10
1秒前
半柚应助chenying采纳,获得10
2秒前
2秒前
2秒前
4秒前
折磊磊发布了新的文献求助10
4秒前
4秒前
5秒前
社会主义接班人完成签到 ,获得积分10
6秒前
怕黑傲珊发布了新的文献求助20
7秒前
完美的凝蝶完成签到 ,获得积分10
9秒前
xiaoruixue完成签到,获得积分10
9秒前
pe发布了新的文献求助10
10秒前
bkagyin应助无限的平露采纳,获得10
10秒前
yb82500发布了新的文献求助10
10秒前
调皮的薯片完成签到,获得积分10
11秒前
清脆的蓝天完成签到,获得积分10
12秒前
贾世冰完成签到,获得积分20
12秒前
13秒前
科研通AI5应助赵焱峥采纳,获得10
14秒前
TheDay完成签到,获得积分10
15秒前
渊澄完成签到,获得积分10
15秒前
彭于晏应助lsy采纳,获得10
16秒前
等你出现完成签到,获得积分10
16秒前
16秒前
谢谢李发布了新的文献求助10
17秒前
领导范儿应助自觉誉采纳,获得10
17秒前
眼睛大的傲菡完成签到,获得积分10
17秒前
清茶完成签到,获得积分10
17秒前
飘逸果汁完成签到,获得积分10
18秒前
山花浪漫应助感动煎饼采纳,获得10
18秒前
哭泣灯泡应助pennlee采纳,获得10
18秒前
lv墩墩完成签到 ,获得积分10
18秒前
传奇3应助不潮不用花钱采纳,获得10
18秒前
文艺的金针菇完成签到 ,获得积分10
19秒前
seven完成签到 ,获得积分10
20秒前
cdercder应助TheDay采纳,获得10
20秒前
21秒前
1111发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737910
求助须知:如何正确求助?哪些是违规求助? 3281470
关于积分的说明 10025533
捐赠科研通 2998170
什么是DOI,文献DOI怎么找? 1645135
邀请新用户注册赠送积分活动 782612
科研通“疑难数据库(出版商)”最低求助积分说明 749843