亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient local search for large-scale set-union knapsack problem

背包问题 数学优化 禁忌搜索 连续背包问题 计算机科学 集合(抽象数据类型) 启发式 比例(比率) 算法 趋同(经济学) 数学 物理 量子力学 经济 程序设计语言 经济增长
作者
Yupeng Zhou,Mengyu Zhao,Mingjie Fan,Yiyuan Wang,Jianan Wang
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
卷期号:55 (2): 233-250 被引量:5
标识
DOI:10.1108/dta-05-2020-0120
摘要

Purpose The set-union knapsack problem is one of the most significant generalizations of the Non-deterministic Polynomial (NP)-hard 0-1 knapsack problem in combinatorial optimization, which has rich application scenarios. Although some researchers performed effective algorithms on normal-sized instances, the authors found these methods deteriorated rapidly as the scale became larger. Therefore, the authors design an efficient yet effective algorithm to solve this large-scale optimization problem, making it applicable to real-world cases under the era of big data. Design/methodology/approach The authors develop three targeted strategies and adjust them into the adaptive tabu search framework. Specifically, the dynamic item scoring tries to select proper items into the knapsack dynamically to enhance the intensification, while the age-guided perturbation places more emphasis on the diversification of the algorithm. The lightweight neighborhood updating simplifies the neighborhood operators to reduce the algorithm complexity distinctly as well as maintains potential solutions. The authors conduct comparative experiments against currently best solvers to show the performance of the proposed algorithm. Findings Statistical experiments show that the proposed algorithm can find 18 out of 24 better solutions than other algorithms. For the remaining six instances on which the competitor also achieves the same solutions, ours performs more stably due to its narrow gap between best and mean value. Besides, the convergence time is also verified efficiency against other algorithms. Originality/value The authors present the first implementation of heuristic algorithm for solving large-scale set-union knapsack problem and achieve the best results. Also, the authors provide the benchmarks on the website for the first time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
puff发布了新的文献求助10
10秒前
柚子发布了新的文献求助10
11秒前
puff完成签到,获得积分10
19秒前
27秒前
27秒前
33秒前
奋斗小夏发布了新的文献求助10
33秒前
Hello应助白临渊采纳,获得10
34秒前
39秒前
YifanWang完成签到,获得积分0
41秒前
42秒前
潇洒绿蕊完成签到,获得积分10
47秒前
归海梦岚完成签到,获得积分0
50秒前
Alanni完成签到 ,获得积分10
53秒前
科目三应助科研通管家采纳,获得10
53秒前
53秒前
53秒前
调皮的灰狼完成签到,获得积分10
1分钟前
在水一方应助张可采纳,获得10
1分钟前
酷酷薯片完成签到,获得积分10
1分钟前
华仔应助调皮的灰狼采纳,获得10
1分钟前
1分钟前
小白小王发布了新的文献求助10
1分钟前
1分钟前
张可发布了新的文献求助10
1分钟前
张可完成签到,获得积分10
1分钟前
huluobo发布了新的文献求助10
1分钟前
小白小王完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lzxbarry完成签到,获得积分0
1分钟前
Yee.完成签到 ,获得积分10
2分钟前
2分钟前
鲤鱼不言应助yo一天采纳,获得20
2分钟前
ranbel完成签到,获得积分10
2分钟前
2分钟前
2分钟前
樊樊完成签到,获得积分20
2分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477406
求助须知:如何正确求助?哪些是违规求助? 3068919
关于积分的说明 9110009
捐赠科研通 2760353
什么是DOI,文献DOI怎么找? 1514834
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699585