摘要
Dementia linked with cognitive impairments is the most prominent indication of Alzheimer's disease (AD). In the current investigation, we have examined the streptozotocin- (STZ) induced cellular toxicity in mouse neuroblastoma (N2A) cells, and Zn with the high-fat diet- (HFD) induced neurotoxicity in mouse brain. These cells and animals were pretreated with apple cider vinegar (ACV), Chrysin, and Rivastigmine to examine their protection against cellular toxicity and neurotoxicity. Experiments have affirmed that pretreatment of ACV, Chrysin, and Rivastigmine has displayed protective outcomes in MTT reduction, tau phosphorylation, amyloid aggregation, attenuated memory impairment as well as oxidative stress, and protected cholinergic hippocampal neurons from degeneration. ACV showed better antioxidant and neuroprotection potential as compared with Chrysin and Rivastigmine. So the existence of excitatory/inhibitory enzymatic activity and higher antioxidant potential indicate that ACV, as a food beverage in a regular diet, could be promising and effective against neurological complications such as AD. Practical applications In the Urban lifestyle, HFD and stress are the critical factors of various chronic and prevalent diseases, including diabetes, obesity, cardiovascular, and neurodegenerative disorders like AD. We are already familiar with the multiple benefits of ACV, such as weight loss, antimicrobial activity, diabetes, skin disorders. So in the current research work, we have gauged the effectiveness of ACV against neurological complications in comparison with a synthetic flavonoid (Chrysin) and an anti-Alzheimer's drug (Rivastigmine). To enhance the pragmatic orientation of our results, we have used the ACV in our study, which is readily available in the market for domestic consumption. All the cellular, biochemical, behavioral, and histopathological data revealed that ACV had high antioxidant potential. Our findings suggest that the addition of ACV as a food additive in the daily diet may reduce the threat of multiple neurodegenerative diseases. Therefore, our study could be the precursor of a new pharmacological therapeutic approach via ACV toward cognitive impairments associated with Alzheimer's disease.