A Machine-Learning-Based Data-Centric Misbehavior Detection Model for Internet of Vehicles

计算机科学 正确性 机器学习 人工智能 互联网 服务器 物联网 计算机安全 计算机网络 算法 万维网
作者
Prinkle Sharma,Hong Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (6): 4991-4999 被引量:103
标识
DOI:10.1109/jiot.2020.3035035
摘要

The Internet of Things (IoT) boosts road safety, efficiency, and infotainment by connecting vehicles to form the Internet of Vehicles (IoV). Specifically to safety, IoV complements autonomous cars beyond sensors' line-of-sight, facilitating vehicle-to-vehicle (V2V) communications in a smart transportation environment. The correctness of data exchanged among vehicles is paramount to ensure vehicles behave as per norms. Traditional misbehavior detection methods hardly defend vehicular security effectively due to rapid dynamics and location privacy. In particular, those node-centric classifiers become ill-fit in IoV. This work proposes a data-centric misbehavior detection model based on supervised machine learning (ML). The work also integrates plausibility checks with ML techniques and instantiates the model with six algorithms to demonstrate their comparative effectiveness. In addition to misbehavior detection, the model classifies attack types to support validating countermeasures. Specifically, the work analyzes the supervised learning algorithms for detecting misbehavior in IoV, compares their performance, and identifies their limitations. VeReMi, a vehicle-to-everything (V2X) position forgery attack built-in simulated road traffic data set, is used to test the effectiveness of the proposed model. The performance metrics include precision-recall (PR) and receiver operating characteristic (ROC) curves. The results demonstrate the effectiveness and significance of ML to detect misbehavior in IoV. The addition of plausibility checks improves the precision and recall by 5% and 2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
强健的雪完成签到,获得积分10
刚刚
小王同学完成签到 ,获得积分10
1秒前
1秒前
无花果应助lanlan采纳,获得10
1秒前
如约而至发布了新的文献求助10
1秒前
zoie0809完成签到,获得积分10
2秒前
2秒前
2秒前
johnson7777发布了新的文献求助10
2秒前
李健应助Hanguo采纳,获得10
2秒前
窝的小卷毛完成签到,获得积分10
2秒前
3秒前
如意新晴完成签到,获得积分10
3秒前
bkagyin应助最卷的卷心菜采纳,获得10
3秒前
搜集达人应助正直从阳采纳,获得10
3秒前
弥叶十厥发布了新的文献求助10
4秒前
hao完成签到,获得积分10
4秒前
善学以致用应助mm采纳,获得10
4秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
6秒前
Shibssjd发布了新的文献求助10
6秒前
明亮的元柏完成签到,获得积分10
6秒前
姽稚完成签到,获得积分10
7秒前
莉亚完成签到,获得积分10
7秒前
欢喜小蚂蚁完成签到,获得积分10
7秒前
MchemG应助大意的小馒头采纳,获得10
8秒前
8秒前
zzz发布了新的文献求助10
8秒前
9秒前
直率猕猴桃完成签到,获得积分10
9秒前
yxw完成签到,获得积分10
9秒前
孙老师发布了新的文献求助10
10秒前
10秒前
10秒前
dd完成签到,获得积分10
11秒前
莉亚发布了新的文献求助30
11秒前
tender完成签到,获得积分10
11秒前
orixero应助蜕变采纳,获得20
11秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408656
求助须知:如何正确求助?哪些是违规求助? 3012730
关于积分的说明 8855601
捐赠科研通 2699976
什么是DOI,文献DOI怎么找? 1480215
科研通“疑难数据库(出版商)”最低求助积分说明 684219
邀请新用户注册赠送积分活动 678543