Molten-Salt-Protected Pyrolysis for Fabricating Perovskite Nanocrystals with Promoted Water Oxidation Behavior

过电位 析氧 材料科学 分解水 塔菲尔方程 化学工程 催化作用 熔盐 纳米晶 电解水 电催化剂 钙钛矿(结构) 纳米颗粒 烧结 纳米技术 电化学 无机化学 电解 化学 电极 冶金 光催化 有机化学 物理化学 电解质 工程类
作者
Yanqing Guo,Fengcai Lei,Jindi Qi,Shanshan Cao,Zimeng Wei,Shanshan Lou,Pin Hao,Junfeng Xie,Bo Tang
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:8 (44): 16711-16719 被引量:18
标识
DOI:10.1021/acssuschemeng.0c06971
摘要

The high overpotential for triggering the oxygen evolution reaction (OER) severely hampers promotion of the overall efficiency for water electrolysis, which significantly restricts implementation of commercial electrocatalytic hydrogen production. Toward exploring advanced OER catalysts with both high efficiency and low cost, transition metal compounds have been regarded as promising alternatives to replace precious metal-based catalysts, among which the cobalt-based materials, especially LaCoO3 perovskites, are highly attractive owing to their tunable electronic structure, relatively high activity, and superior stability. However, the harsh reaction environments for the fabrication of perovskites often result in micrometer-scale particles with limited surface sites, and modulation of electronic structures is also required to be further optimized. In this work, we proposed a molten-salt-protected pyrolysis (MSPP) route to convert the amorphous nanoparticle precursors to LaCoO3 nanocrystals with tunable Fe doping, during which the molten salts could not only act as an effective reaction medium to avoid interparticle sintering but also induce enrichment of surface Co3+ ions with high catalytic activity. Theoretical and experimental analyses indicate that Fe doping could significantly modulate the electronic structure of LaCoO3, resulting in enhanced Co–O covalency and facile charge transfer behavior during the OER. With the above merits, remarkable OER performance with ultralow overpotential, high catalytic current density, small Tafel slope, outstanding intrinsic OER activity, and superior operational stability can be synergistically achieved for the Fe-doped LaCoO3 nanocrystals, making the perovskite nanocatalyst a promising candidate for electrochemical water splitting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Noah完成签到 ,获得积分10
刚刚
苻醉山完成签到 ,获得积分10
1秒前
医平青云完成签到 ,获得积分10
3秒前
JACk完成签到 ,获得积分10
4秒前
CLTTTt完成签到,获得积分10
7秒前
小谭完成签到 ,获得积分10
7秒前
maclogos完成签到,获得积分10
13秒前
zkk完成签到 ,获得积分10
17秒前
薏仁完成签到 ,获得积分10
20秒前
落寞溪灵完成签到 ,获得积分10
28秒前
啦啦啦啦完成签到 ,获得积分10
35秒前
monned完成签到 ,获得积分10
41秒前
欣喜大地完成签到 ,获得积分10
43秒前
47秒前
诸青梦完成签到 ,获得积分10
59秒前
ihonest完成签到,获得积分10
1分钟前
Lucas应助冉亦采纳,获得20
1分钟前
DDX完成签到 ,获得积分10
1分钟前
1分钟前
chen完成签到,获得积分10
1分钟前
李凤凤完成签到 ,获得积分10
1分钟前
ywsss完成签到,获得积分10
1分钟前
1分钟前
冉亦发布了新的文献求助20
1分钟前
齐齐完成签到,获得积分10
1分钟前
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
萧水白应助科研通管家采纳,获得10
1分钟前
zai完成签到 ,获得积分10
1分钟前
wx1完成签到 ,获得积分0
1分钟前
Alger完成签到,获得积分10
1分钟前
qianci2009完成签到,获得积分10
1分钟前
zxcharm完成签到,获得积分10
1分钟前
2分钟前
悄悄完成签到 ,获得积分10
2分钟前
cq_2完成签到,获得积分10
2分钟前
皮卡丘完成签到,获得积分10
2分钟前
廖程完成签到 ,获得积分10
2分钟前
2分钟前
天天快乐应助冉亦采纳,获得20
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788025
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010