已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection, Location and Concealment of Defective Pixels in Image Sensors

像素 计算机科学 人工智能 计算机视觉 过程(计算) 块(置换群论) 图像传感器 图像(数学) 图像处理 模式识别(心理学) 数学 几何学 操作系统
作者
Ghislain Takam Tchendjou,Emmanuel Simeu
出处
期刊:IEEE Transactions on Emerging Topics in Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 664-679 被引量:11
标识
DOI:10.1109/tetc.2020.2976807
摘要

This paper presents the construction process of defective pixel detection and concealment methods, for image sensor online diagnosis and self-healing. The proposed process is based on pixel neighborhood analysis using only simple arithmetic operations on the image files. This leads to an optimization of the processing speed of the produced image. A first step in the process is to identify and locate the defective pixels on the image. Three defective pixel detection algorithms are proposed. The first one uses the distance between the pixel under test and its neighboring pixels. The second method is based on the median value of the pixel block around each pixel. The third method uses an evaluation and analysis of the local dispersion parameters in the image. The concealment of detected defective pixels is the second step of the self-healing process of image sensor. It consists of substituting the defective value by the median value of the neighborhood pixel block. In the study and learning phase, distorted images obtained by injecting random disturbances into healthy reference images are used to evaluate the defective pixel detection and concealment methods. The set of $1 176$ distorted images is constructed using 196 reference images with six types of defects, based on typical failure mechanism of image sensors. The proposed methods are compared to different state-of-the-art defective pixel detection and correction methods, in both software and FPGA implementations. The experimental results undoubtedly demonstrate that the new methods proposed in this paper perform the best results compared to the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助我是張寜啊采纳,获得10
1秒前
sep完成签到 ,获得积分10
2秒前
2秒前
朱敛发布了新的文献求助10
2秒前
锅碗瓢盆完成签到 ,获得积分10
2秒前
涤尘完成签到,获得积分10
4秒前
天天快乐应助张泽林采纳,获得10
7秒前
思源应助张泽林采纳,获得10
7秒前
所所应助张泽林采纳,获得10
7秒前
思源应助张泽林采纳,获得10
7秒前
思源应助小邢采纳,获得10
7秒前
一er发布了新的文献求助10
8秒前
科研通AI2S应助体贴的板栗采纳,获得10
10秒前
儒雅的夏山完成签到 ,获得积分10
11秒前
忧郁如柏完成签到,获得积分10
13秒前
billevans完成签到,获得积分10
13秒前
精灵夜雨完成签到,获得积分10
13秒前
变成雪花完成签到 ,获得积分10
13秒前
搜集达人应助yjj采纳,获得10
14秒前
春夏秋冬完成签到,获得积分10
17秒前
FF完成签到 ,获得积分10
18秒前
谢谢谢谢谢谢谢谢完成签到 ,获得积分10
20秒前
JackLiu完成签到,获得积分10
23秒前
24秒前
26秒前
26秒前
jixing完成签到,获得积分10
27秒前
一介尘埃完成签到 ,获得积分10
27秒前
28秒前
HONG完成签到 ,获得积分10
32秒前
可乐不加冰完成签到,获得积分10
33秒前
Yuna96发布了新的文献求助10
33秒前
yjj发布了新的文献求助10
34秒前
难过的人生完成签到 ,获得积分10
38秒前
li发布了新的文献求助10
40秒前
李健的小迷弟应助Azhe采纳,获得10
40秒前
40秒前
41秒前
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567976
求助须知:如何正确求助?哪些是违规求助? 4652487
关于积分的说明 14701251
捐赠科研通 4594367
什么是DOI,文献DOI怎么找? 2520833
邀请新用户注册赠送积分活动 1492790
关于科研通互助平台的介绍 1463645