Detection, Location and Concealment of Defective Pixels in Image Sensors

像素 计算机科学 人工智能 计算机视觉 过程(计算) 块(置换群论) 图像传感器 图像(数学) 图像处理 模式识别(心理学) 数学 几何学 操作系统
作者
Ghislain Takam Tchendjou,Emmanuel Simeu
出处
期刊:IEEE Transactions on Emerging Topics in Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 664-679 被引量:11
标识
DOI:10.1109/tetc.2020.2976807
摘要

This paper presents the construction process of defective pixel detection and concealment methods, for image sensor online diagnosis and self-healing. The proposed process is based on pixel neighborhood analysis using only simple arithmetic operations on the image files. This leads to an optimization of the processing speed of the produced image. A first step in the process is to identify and locate the defective pixels on the image. Three defective pixel detection algorithms are proposed. The first one uses the distance between the pixel under test and its neighboring pixels. The second method is based on the median value of the pixel block around each pixel. The third method uses an evaluation and analysis of the local dispersion parameters in the image. The concealment of detected defective pixels is the second step of the self-healing process of image sensor. It consists of substituting the defective value by the median value of the neighborhood pixel block. In the study and learning phase, distorted images obtained by injecting random disturbances into healthy reference images are used to evaluate the defective pixel detection and concealment methods. The set of $1 176$ distorted images is constructed using 196 reference images with six types of defects, based on typical failure mechanism of image sensors. The proposed methods are compared to different state-of-the-art defective pixel detection and correction methods, in both software and FPGA implementations. The experimental results undoubtedly demonstrate that the new methods proposed in this paper perform the best results compared to the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳的乐松完成签到,获得积分10
刚刚
微笑的天抒完成签到,获得积分10
1秒前
打打应助66采纳,获得10
1秒前
2秒前
个性源智完成签到,获得积分20
2秒前
xnzll完成签到,获得积分10
2秒前
superleo完成签到,获得积分10
2秒前
4秒前
乔尔司空完成签到,获得积分10
6秒前
6秒前
7秒前
水蓝心晴发布了新的文献求助10
7秒前
爱笑灵雁发布了新的文献求助10
8秒前
谢大喵发布了新的文献求助10
9秒前
Mannone完成签到 ,获得积分10
10秒前
NexusExplorer应助清爽绿旋采纳,获得30
10秒前
风筝发布了新的文献求助10
11秒前
11秒前
Yingqian_Zhang完成签到 ,获得积分10
12秒前
LEO完成签到,获得积分10
12秒前
hy完成签到 ,获得积分10
13秒前
蓝天发布了新的文献求助10
13秒前
小胖wwwww完成签到 ,获得积分10
13秒前
13秒前
Frank应助tian采纳,获得10
14秒前
无辜的翠安完成签到 ,获得积分10
16秒前
个性源智发布了新的文献求助30
17秒前
Chou完成签到,获得积分10
19秒前
19秒前
烟花应助Buster采纳,获得10
20秒前
hsp发布了新的文献求助30
21秒前
水123发布了新的文献求助10
22秒前
邓凯月完成签到,获得积分10
23秒前
Amber发布了新的文献求助10
24秒前
小于发布了新的文献求助10
24秒前
wenlongliu完成签到,获得积分10
26秒前
26秒前
迅速的百川完成签到,获得积分10
26秒前
zyd完成签到,获得积分10
27秒前
Buster完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603799
求助须知:如何正确求助?哪些是违规求助? 4688754
关于积分的说明 14855835
捐赠科研通 4695101
什么是DOI,文献DOI怎么找? 2540987
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814