Detection, Location and Concealment of Defective Pixels in Image Sensors

像素 计算机科学 人工智能 计算机视觉 过程(计算) 块(置换群论) 图像传感器 图像(数学) 图像处理 模式识别(心理学) 数学 几何学 操作系统
作者
Ghislain Takam Tchendjou,Emmanuel Simeu
出处
期刊:IEEE Transactions on Emerging Topics in Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 664-679 被引量:11
标识
DOI:10.1109/tetc.2020.2976807
摘要

This paper presents the construction process of defective pixel detection and concealment methods, for image sensor online diagnosis and self-healing. The proposed process is based on pixel neighborhood analysis using only simple arithmetic operations on the image files. This leads to an optimization of the processing speed of the produced image. A first step in the process is to identify and locate the defective pixels on the image. Three defective pixel detection algorithms are proposed. The first one uses the distance between the pixel under test and its neighboring pixels. The second method is based on the median value of the pixel block around each pixel. The third method uses an evaluation and analysis of the local dispersion parameters in the image. The concealment of detected defective pixels is the second step of the self-healing process of image sensor. It consists of substituting the defective value by the median value of the neighborhood pixel block. In the study and learning phase, distorted images obtained by injecting random disturbances into healthy reference images are used to evaluate the defective pixel detection and concealment methods. The set of $1 176$ distorted images is constructed using 196 reference images with six types of defects, based on typical failure mechanism of image sensors. The proposed methods are compared to different state-of-the-art defective pixel detection and correction methods, in both software and FPGA implementations. The experimental results undoubtedly demonstrate that the new methods proposed in this paper perform the best results compared to the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逆鳞发布了新的文献求助10
刚刚
AlexLXJ发布了新的文献求助10
刚刚
Emma发布了新的文献求助10
1秒前
叶。。。发布了新的文献求助10
2秒前
3秒前
3秒前
裴秀智发布了新的文献求助10
3秒前
所所应助蜉蝣采纳,获得10
4秒前
酷波er应助英吉利25采纳,获得10
4秒前
小鱼发布了新的文献求助10
6秒前
倪妮发布了新的文献求助10
6秒前
火星人发布了新的文献求助10
6秒前
6秒前
田様应助怡然千琴采纳,获得10
7秒前
二分三分完成签到,获得积分10
7秒前
8秒前
8秒前
叶子完成签到 ,获得积分10
9秒前
loong完成签到,获得积分10
9秒前
Hello应助周城采纳,获得10
9秒前
今后应助Zox采纳,获得10
10秒前
10秒前
ju00完成签到,获得积分10
10秒前
11秒前
欢欢完成签到 ,获得积分10
12秒前
某某发布了新的文献求助10
12秒前
13秒前
苏紫梗桔发布了新的文献求助10
14秒前
14秒前
逆鳞完成签到,获得积分10
15秒前
15秒前
golf完成签到,获得积分10
16秒前
心灵美的修洁完成签到 ,获得积分10
16秒前
17秒前
17秒前
Akim应助hxm采纳,获得10
17秒前
IVENG发布了新的文献求助10
18秒前
布吉岛呀完成签到 ,获得积分10
18秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259353
求助须知:如何正确求助?哪些是违规求助? 4421049
关于积分的说明 13761672
捐赠科研通 4294788
什么是DOI,文献DOI怎么找? 2356585
邀请新用户注册赠送积分活动 1352976
关于科研通互助平台的介绍 1313938