Detection, Location and Concealment of Defective Pixels in Image Sensors

像素 计算机科学 人工智能 计算机视觉 过程(计算) 块(置换群论) 图像传感器 图像(数学) 图像处理 模式识别(心理学) 数学 几何学 操作系统
作者
Ghislain Takam Tchendjou,Emmanuel Simeu
出处
期刊:IEEE Transactions on Emerging Topics in Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 664-679 被引量:11
标识
DOI:10.1109/tetc.2020.2976807
摘要

This paper presents the construction process of defective pixel detection and concealment methods, for image sensor online diagnosis and self-healing. The proposed process is based on pixel neighborhood analysis using only simple arithmetic operations on the image files. This leads to an optimization of the processing speed of the produced image. A first step in the process is to identify and locate the defective pixels on the image. Three defective pixel detection algorithms are proposed. The first one uses the distance between the pixel under test and its neighboring pixels. The second method is based on the median value of the pixel block around each pixel. The third method uses an evaluation and analysis of the local dispersion parameters in the image. The concealment of detected defective pixels is the second step of the self-healing process of image sensor. It consists of substituting the defective value by the median value of the neighborhood pixel block. In the study and learning phase, distorted images obtained by injecting random disturbances into healthy reference images are used to evaluate the defective pixel detection and concealment methods. The set of $1 176$ distorted images is constructed using 196 reference images with six types of defects, based on typical failure mechanism of image sensors. The proposed methods are compared to different state-of-the-art defective pixel detection and correction methods, in both software and FPGA implementations. The experimental results undoubtedly demonstrate that the new methods proposed in this paper perform the best results compared to the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不能在吃了完成签到,获得积分10
刚刚
刚刚
李健应助有几颗荔枝采纳,获得10
1秒前
2秒前
3秒前
3秒前
mhy完成签到 ,获得积分10
5秒前
大好河山完成签到,获得积分10
5秒前
斯提亚拉发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
JamesPei应助研友_nVWXMZ采纳,获得10
8秒前
CodeCraft应助王jj采纳,获得10
8秒前
为什么不可用完成签到,获得积分10
9秒前
10秒前
爆米花应助英俊的白安采纳,获得10
12秒前
13秒前
14秒前
YY完成签到,获得积分10
14秒前
111版发布了新的文献求助10
16秒前
陈政豪发布了新的文献求助10
17秒前
小蘑菇应助初晨采纳,获得10
17秒前
科研通AI6应助张张采纳,获得20
18秒前
18秒前
suhua发布了新的文献求助10
18秒前
科研通AI6应助挖井采纳,获得10
19秒前
19秒前
19秒前
执着艳完成签到 ,获得积分10
20秒前
CodeCraft应助王jj采纳,获得10
21秒前
21秒前
23秒前
Gloyxtg发布了新的文献求助10
24秒前
考博圣体发布了新的文献求助10
24秒前
24秒前
24秒前
adljian完成签到,获得积分10
24秒前
41完成签到,获得积分20
25秒前
淡定自中发布了新的文献求助10
25秒前
liu发布了新的文献求助10
26秒前
Jasper应助抹茶二锅头采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642594
求助须知:如何正确求助?哪些是违规求助? 4759426
关于积分的说明 15018313
捐赠科研通 4801162
什么是DOI,文献DOI怎么找? 2566473
邀请新用户注册赠送积分活动 1524521
关于科研通互助平台的介绍 1484039