期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers] 日期:2021-05-01卷期号:29 (5): 1273-1283被引量:87
标识
DOI:10.1109/tfuzz.2020.2973950
摘要
This article investigates the event-triggered control problem for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis. Based on the fuzzy logic systems, the unknown nonlinear functions can be identified. Then, by utilizing a fuzzy state observer, the unmeasured states of the considered system can be estimated. Moreover, by introducing an event-triggered mechanism, the communication load can be largely reduced. By employing the backstepping control strategy and the adaptive control method, a novel adaptive fuzzy event-triggered control method is constructed. It is shown that whole signals in the closed-loop systems are, ultimately, semiglobally and uniformly bounded in probability. Moreover, the tracking errors and the observer errors are located in a small neighborhood around the origin. Finally, a numerical example is given to confirm the effectiveness of the design scheme.