潮汐能
海洋工程
涡轮机
系泊
电流(流体)
转子(电动)
浪涌
地质学
海上风力发电
张力(地质)
大地测量学
工程类
环境科学
航空航天工程
海洋学
机械工程
物理
地貌学
经典力学
力矩(物理)
作者
Chao Hu,Yong Ma,Lei Li,Tengfei Li
出处
期刊:Journal of Coastal Research
[BioOne (Coastal Education and Research Foundation)]
日期:2020-06-23
卷期号:103 (sp1): 784-784
被引量:3
摘要
Hu, C.; Ma, Y.; Li, L., and Li, T., 2020. Coupled motion prediction of a floating tidal current power station with vertical axis twin-rotor turbine. In: Yang, Y.; Mi, C.; Zhao, L., and Lam, S. (eds.), Global Topics and New Trends in Coastal Research: Port, Coastal and Ocean Engineering. Journal of Coastal Research, Special Issue No. 103, pp. 784–788. Coconut Creek (Florida), ISSN 0749-0208.Floating offshore tidal current turbines are usually moored in the sea, which will endure the wind-wave-current load in a long term. Power production of the tidal current turbine will result in extra excitation force acting on the platform, which will make the motion prediction and positioning system design of the floating platform more complicated. In order to predict the motion response of a floating tidal current power station, a coupled motion prediction method is established to explore the coupled interaction among the platform, the turbine and the mooring system. The turbine influence is considered as added mass and damping acting on the platform. Results shows that the fitted hydrodynamics agree well with numerical simulation results. The operation of the tidal turbine can increase the surge amplitude and pitch angle of catamaran, and the mooring line tension will increase as well. The research can provide some reference for motion response prediction and mooring positioning of a floating tidal current power station.
科研通智能强力驱动
Strongly Powered by AbleSci AI