材料科学
阴极
硫黄
化学工程
聚丙烯腈
快离子导体
相(物质)
氧化还原
无机化学
电池(电)
多硫化物
锂(药物)
电解质
纳米技术
电极
化学
物理化学
冶金
复合材料
有机化学
物理
量子力学
工程类
内分泌学
功率(物理)
医学
聚合物
作者
Bin He,Zhixiang Rao,Zexiao Cheng,Dongdong Liu,Deyan He,Jie Chen,Ziyun Miao,Lixia Yuan,Zhen Li,Yunhui Huang
标识
DOI:10.1002/aenm.202003690
摘要
Abstract Solid–solid reactions are very effective for solving the main challenges of lithium–sulfur (Li–S) batteries, such as the shuttle effect of polysulfides and the high dependence of electrolyte consumption. However, the low sulfur content and sluggish redox kinetics of such cathodes dramatically limit the practical energy density of Li–S batteries. Here a rationally designed hierarchical cathode to simultaneously solve above‐mentioned challenges is reported. With nanoscale sulfur as the core, selenium‐doped sulfurized polyacrylonitrile (PAN/S 7 Se) as the shell and micron‐scale secondary particle morphology, the proposed cathode realizes excellent solid–solid reaction kinetics in a commercial carbonate electrolyte under high active species loading and a relatively low electrolyte/sulfur ratio. Such an approach provides a promising solution toward practical lithium sulfur batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI