Stabilization of Li Metal Powder Anodes on Cu Foil Current Collectors Using Thin Carbon Interlayers

材料科学 集电器 阳极 箔法 电解质 锂(药物) 复合材料 电极 碳纤维 电化学 原电池 冶金 纳米技术 化学 内分泌学 物理化学 复合数 医学
作者
Dahee Jin,Youngjoon Roh,Hongkyung Lee,Myung‐Hyun Ryou,Yong Min Lee
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (68): 3482-3482
标识
DOI:10.1149/ma2020-02683482mtgabs
摘要

Due to the highest theoretical capacity, the Li metal anode is considered to be the most ideal anode materials for large-scale batteries, if the problems related to Li dendrite growth can be overcome. Obviously, as most people know well, enlarging the surface area of the Li metal has quite an influence on lower the effective current density to suppress the lithium dendrite growth of lithium metal secondary batteries (LMSB). For this reason, lithium metal powder (LiMP) has attracted much attention for use in electrodes because of its 4.5 times higher surface area compared to lithium foil. However, the electrolyte can be fully penetrated to the LiMP electrode due to its porosity, which leads to galvanic corrosion between Cu foil and LiMP particles. Furthermore, repeated cycling deepens the delamination of lithium particles from Cu foil and results in excess dead lithium particles. Herein, we address this problem by coating the submicron-thickness (~600 nm) carbon interlayer on Cu foil for the LiMP electrode. Despite the LiMP electrode that exists under the electrolyte, the nanoscale carbon interlayer plays an important role in enhancing the adhesive strength between LiMP particle and Cu foil. To confirm the role of the carbon interlayer, we succeeded in quantifying the adhesive strength at the Li/Cu interface for the first time using a surface and interfacial cutting analysis system (SAICAS). Furthermore, the seeding effect of the carbon interlayer in Li/Li symmetric cells and improving electrochemical performance in thin LiMP (40 μm) based cell.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助Yan0909采纳,获得10
刚刚
JamesPei应助孝顺的青筠采纳,获得10
1秒前
1秒前
大林发布了新的文献求助10
2秒前
zouyan233发布了新的文献求助10
2秒前
玥来玥好发布了新的文献求助10
2秒前
2秒前
所所应助eric62523采纳,获得10
2秒前
科目三应助yangyajie采纳,获得10
3秒前
ZZH关闭了ZZH文献求助
3秒前
3秒前
3秒前
健壮邑完成签到 ,获得积分10
3秒前
粗犷的老虎完成签到,获得积分10
4秒前
5秒前
孤独谷冬发布了新的文献求助10
5秒前
十个人发布了新的文献求助50
5秒前
CipherSage应助潇洒的青丝采纳,获得30
6秒前
6秒前
8秒前
乐乐应助此晴可待采纳,获得10
8秒前
屈灿发布了新的文献求助10
8秒前
8秒前
fklajlie完成签到,获得积分10
8秒前
8秒前
李爱国应助xiaoyi采纳,获得10
8秒前
zf完成签到,获得积分20
9秒前
9秒前
冬__完成签到 ,获得积分10
10秒前
10秒前
10秒前
善学以致用应助顾化蛹采纳,获得10
11秒前
11秒前
wanci应助xueqinFan采纳,获得10
12秒前
爆米花应助xiyue采纳,获得10
12秒前
12秒前
王大锤发布了新的文献求助10
12秒前
12秒前
苗条棒棒糖完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559249
求助须知:如何正确求助?哪些是违规求助? 3133915
关于积分的说明 9404473
捐赠科研通 2834019
什么是DOI,文献DOI怎么找? 1557787
邀请新用户注册赠送积分活动 727686
科研通“疑难数据库(出版商)”最低求助积分说明 716399