Series Arc Fault Detection Method Based on Category Recognition and Artificial Neural Network

电弧故障断路器 人工神经网络 弧(几何) 断层(地质) 波形 时域 计算机科学 电阻式触摸屏 模式识别(心理学) 频域 人工智能 电压 工程类 短路 电气工程 计算机视觉 地质学 机械工程 地震学
作者
Xiangyu Han,Dingkang Li,Lizong Huang,Hanqing Huang,Yang Jin,Yilei Zhang,Xuewei Wu,Qiwei Lu
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:9 (9): 1367-1367 被引量:27
标识
DOI:10.3390/electronics9091367
摘要

The influence of a series arc on line current is different with different loads, which makes it difficult to accurately extract arc fault characteristics suitable for all loads according to line current signal. To improve the accuracy of arc fault detection, a series arc fault detection method based on category recognition and an artificial neural network is proposed on the basis of analyzing the current characteristics of arc faults under different loads. According to the waveform of current and voltage, the load is divided into three types: Resistive category (Re), resistive-inductive category (RI), and rectifying circuit with a capacitive filter category (RCCF). Based on the wavelet transform, the characteristics of line current in the time domain and frequency domain when the series arc occurs under different types of loads are analyzed, and then the time and frequency indicators are taken as the inputs of the artificial neural network to establish three-layer neural networks corresponding to three types of loads to realize the detection of the series arc fault of lines under different categories of loads. To avoid the neural network falling into a local optimum, the initial weight and threshold of the neural network are optimized by a genetic algorithm, which further improves the accuracy of the neural network in arc identification. The experimental results show that the proposed arc detection method has the advantages of high recognition rate and a simple neural network model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Ryan0824完成签到,获得积分10
2秒前
科研通AI5应助111采纳,获得10
2秒前
缓冲间发布了新的文献求助10
2秒前
大模型应助anny2022采纳,获得10
4秒前
4秒前
efjbvb发布了新的文献求助10
5秒前
菜炸炸呀完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
爱笑凤凰完成签到,获得积分10
6秒前
jjjjjj发布了新的文献求助10
7秒前
深情安青应助ycxxyc采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
916应助科研通管家采纳,获得10
7秒前
细心的梦芝完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
情怀应助陶醉平松采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
8秒前
科研通AI5应助科研通管家采纳,获得20
8秒前
summer应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
虚心十三应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
凌云发布了新的文献求助10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734857
求助须知:如何正确求助?哪些是违规求助? 3278790
关于积分的说明 10011741
捐赠科研通 2995468
什么是DOI,文献DOI怎么找? 1643460
邀请新用户注册赠送积分活动 781216
科研通“疑难数据库(出版商)”最低求助积分说明 749300