A Self-Training Approach for Point-Supervised Object Detection and Counting in Crowds

人群 计算机科学 水准点(测量) 目标检测 人工智能 对象(语法) 点(几何) 探测器 编码(集合论) 解码方法 计算机视觉 代表(政治) 模式识别(心理学) 数学 算法 集合(抽象数据类型) 政治 几何学 计算机安全 程序设计语言 法学 地理 政治学 电信 大地测量学
作者
Yi Wang,Junhui Hou,Xinyu Hou,Lap‐Pui Chau
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 2876-2887 被引量:100
标识
DOI:10.1109/tip.2021.3055632
摘要

In this article, we propose a novel self-training approach named Crowd-SDNet that enables a typical object detector trained only with point-level annotations (i.e., objects are labeled with points) to estimate both the center points and sizes of crowded objects. Specifically, during training, we utilize the available point annotations to supervise the estimation of the center points of objects directly. Based on a locally-uniform distribution assumption, we initialize pseudo object sizes from the point-level supervisory information, which are then leveraged to guide the regression of object sizes via a crowdedness-aware loss. Meanwhile, we propose a confidence and order-aware refinement scheme to continuously refine the initial pseudo object sizes such that the ability of the detector is increasingly boosted to detect and count objects in crowds simultaneously. Moreover, to address extremely crowded scenes, we propose an effective decoding method to improve the detector's representation ability. Experimental results on the WiderFace benchmark show that our approach significantly outperforms state-of-the-art point-supervised methods under both detection and counting tasks, i.e., our method improves the average precision by more than 10% and reduces the counting error by 31.2%. Besides, our method obtains the best results on the crowd counting and localization datasets (i.e., ShanghaiTech and NWPU-Crowd) and vehicle counting datasets (i.e., CARPK and PUCPR+) compared with state-of-the-art counting-by-detection methods. The code will be publicly available at https://github.com/WangyiNTU/Point-supervised-crowd-detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞的玉米应助炫炫炫采纳,获得10
刚刚
00gi发布了新的文献求助10
1秒前
万能图书馆应助T_MC郭采纳,获得10
1秒前
科研通AI2S应助小赵爱喝水采纳,获得10
1秒前
研友_xLOMQZ完成签到,获得积分10
1秒前
victormanboy3发布了新的文献求助10
2秒前
传统的如霜完成签到,获得积分10
2秒前
QQ发布了新的文献求助10
2秒前
2秒前
3秒前
sanjun完成签到,获得积分10
4秒前
chai完成签到,获得积分10
5秒前
5秒前
舒服的幻梅完成签到 ,获得积分10
5秒前
Rena完成签到,获得积分20
5秒前
贪玩小小发布了新的文献求助10
7秒前
8秒前
8秒前
顾矜应助Tu采纳,获得10
8秒前
8秒前
9秒前
niuniu完成签到,获得积分20
10秒前
12秒前
小鱼儿发布了新的文献求助10
12秒前
ysl发布了新的文献求助10
12秒前
虚影完成签到 ,获得积分10
13秒前
niuniu发布了新的文献求助30
13秒前
科研通AI5应助jagger采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
科研通AI5应助自觉的芷蝶采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
欣慰白云完成签到,获得积分10
19秒前
思源应助surprise采纳,获得10
19秒前
科研通AI5应助瘦瘦的灵槐采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559846
求助须知:如何正确求助?哪些是违规求助? 3134300
关于积分的说明 9406386
捐赠科研通 2834333
什么是DOI,文献DOI怎么找? 1558074
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522