Deep learning for blocking in entity matching

计算机科学 阻塞(统计) 利用 匹配(统计) 变压器 人工智能 理论计算机科学 空格(标点符号) 数据挖掘 算法 数学 操作系统 电压 物理 统计 量子力学 计算机安全 计算机网络
作者
Saravanan Thirumuruganathan,Han Li,Nan Tang,Mourad Ouzzani,Yash Govind,Derek J. Paulsen,Glenn Fung,AnHai Doan
出处
期刊:Proceedings of the VLDB Endowment [VLDB Endowment]
卷期号:14 (11): 2459-2472 被引量:30
标识
DOI:10.14778/3476249.3476294
摘要

Entity matching (EM) finds data instances that refer to the same real-world entity. Most EM solutions perform blocking then matching. Many works have applied deep learning (DL) to matching, but far fewer works have applied DL to blocking. These blocking works are also limited in that they consider only a simple form of DL and some of them require labeled training data. In this paper, we develop the DeepBlocker framework that significantly advances the state of the art in applying DL to blocking for EM. We first define a large space of DL solutions for blocking, which contains solutions of varying complexity and subsumes most previous works. Next, we develop eight representative solutions in this space. These solutions do not require labeled training data and exploit recent advances in DL (e.g., sequence modeling, transformer, self supervision). We empirically determine which solutions perform best on what kind of datasets (structured, textual, or dirty). We show that the best solutions (among the above eight) outperform the best existing DL solution and the best existing non-DL solutions (including a state-of-the-art industrial non-DL solution), on dirty and textual data, and are comparable on structured data. Finally, we show that the combination of the best DL and non-DL solutions can perform even better, suggesting a new venue for research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈一一完成签到 ,获得积分10
刚刚
梧桐雨210发布了新的文献求助10
刚刚
刚刚
刚刚
丘比特应助陈隆采纳,获得10
1秒前
用户1747发布了新的文献求助10
1秒前
呼斯冷发布了新的文献求助10
1秒前
1秒前
2秒前
朴实的薯片完成签到 ,获得积分10
2秒前
充电宝应助罗大海采纳,获得10
3秒前
3秒前
段明威发布了新的文献求助10
3秒前
CipherSage应助开心健康快乐采纳,获得10
4秒前
4秒前
Lucas应助橡皮泥采纳,获得10
4秒前
4秒前
4秒前
潇洒发布了新的文献求助10
5秒前
南木发布了新的文献求助10
5秒前
科研通AI5应助暴躁的晓啸采纳,获得10
5秒前
主席发布了新的文献求助10
6秒前
6秒前
CipherSage应助小刘采纳,获得10
6秒前
聪子完成签到,获得积分10
6秒前
yyyy发布了新的文献求助10
7秒前
8秒前
36456657应助薛厌采纳,获得10
8秒前
脑洞疼应助Lion采纳,获得10
8秒前
8秒前
曾珍发布了新的文献求助10
8秒前
搜集达人应助lily采纳,获得10
9秒前
聪子发布了新的文献求助10
9秒前
Jasper应助lailai采纳,获得10
9秒前
just完成签到,获得积分10
10秒前
10秒前
10秒前
LUMEN发布了新的文献求助10
11秒前
11秒前
万能图书馆应助tiansiyu采纳,获得10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487798
求助须知:如何正确求助?哪些是违规求助? 3075697
关于积分的说明 9141664
捐赠科研通 2767951
什么是DOI,文献DOI怎么找? 1518837
邀请新用户注册赠送积分活动 703346
科研通“疑难数据库(出版商)”最低求助积分说明 701805