Machine-learning identification of the variability of mean velocity and turbulence intensity for wakes generated by onshore wind turbines: Cluster analysis of wind LiDAR measurements

唤醒 激光雷达 风速 涡轮机 转子(电动) 湍流 气象学 湍流动能 尾流紊流 风力发电 测距 环境科学 遥感 推力 航空航天工程 物理 工程类 地质学 大地测量学 机械工程 电气工程
作者
Giacomo Valerio Iungo,Romit Maulik,S. Ashwin Renganathan,Stefano Letizia
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:14 (2) 被引量:9
标识
DOI:10.1063/5.0070094
摘要

Light detection and ranging (LiDAR) measurements of isolated wakes generated by wind turbines installed at an onshore wind farm are leveraged to characterize the variability of the wake mean velocity and turbulence intensity during typical operations, which encompass a breadth of atmospheric stability regimes and rotor thrust coefficients. The LiDAR measurements are clustered through the k-means algorithm, which enables identifying the most representative realizations of wind turbine wakes while avoiding the imposition of thresholds for the various wind and turbine parameters. Considering the large number of LiDAR samples collected to probe the wake velocity field, the dimensionality of the experimental dataset is reduced by projecting the LiDAR data on an intelligently truncated basis obtained with the proper orthogonal decomposition (POD). The coefficients of only five physics-informed POD modes are then injected in the k-means algorithm for clustering the LiDAR dataset. The analysis of the clustered LiDAR data and the associated supervisory control and data acquisition and meteorological data enables the study of the variability of the wake velocity deficit, wake extent, and wake-added turbulence intensity for different thrust coefficients of the turbine rotor and regimes of atmospheric stability. Furthermore, the cluster analysis of the LiDAR data allows for the identification of systematic off-design operations with a certain yaw misalignment of the turbine rotor with the mean wind direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通~发布了新的文献求助10
1秒前
MES发布了新的文献求助10
1秒前
赘婿应助jennifercui采纳,获得10
1秒前
1秒前
2秒前
2秒前
Nifeng完成签到,获得积分10
2秒前
爱听歌的依秋完成签到,获得积分10
2秒前
ufuon发布了新的文献求助10
2秒前
追寻的山晴完成签到,获得积分10
3秒前
3秒前
汉堡包应助otaro采纳,获得10
3秒前
思源应助xfxx采纳,获得10
3秒前
3秒前
铁锤xy完成签到,获得积分10
4秒前
5秒前
5秒前
善学以致用应助qinqin采纳,获得10
6秒前
6秒前
想要礼物的艾斯米拉达完成签到,获得积分10
7秒前
内向秋寒完成签到,获得积分10
7秒前
Alicia完成签到 ,获得积分10
7秒前
8秒前
9秒前
简单的银耳汤完成签到,获得积分10
9秒前
wangbq完成签到 ,获得积分10
9秒前
Moonlight完成签到 ,获得积分10
9秒前
爱撒娇的冰安完成签到,获得积分20
10秒前
zhui发布了新的文献求助10
10秒前
pi完成签到 ,获得积分20
10秒前
发嗲的忆寒完成签到,获得积分10
10秒前
爆米花应助通~采纳,获得10
10秒前
333完成签到 ,获得积分10
11秒前
MES完成签到,获得积分10
11秒前
糊弄学专家完成签到,获得积分10
11秒前
852应助ccyrichard采纳,获得10
12秒前
12秒前
12秒前
噜噜噜噜噜完成签到,获得积分10
13秒前
leez完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794