Fault Diagnosis of Machines Using Deep Convolutional Beta-Variational Autoencoder

计算机科学 自编码 判别式 人工智能 随机森林 停工期 深度学习 模式识别(心理学) 数据挖掘 机器学习 操作系统
作者
Gaurav Dewangan,Seetaram Maurya
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:3 (2): 287-296 被引量:25
标识
DOI:10.1109/tai.2021.3110835
摘要

Industries are using fault diagnosis methods to prevent any downtime, which eventually led them to make profits and take necessary steps beforehand to avoid any mishaps. In recent years, deep learning methods have shown extraordinary performance in massive data applications with advancement in computing power. In this article, a novel intelligent fault diagnosis scheme based on deep convolutional variable-beta variational autoencoder (VAE) is proposed to extract discriminative features. A new min–max algorithm for data points reduction and a random sampling technique to get 2-D data has been proposed. The proposed fault diagnosis combines all intermediate steps (from preprocessing to classification) in a single framework, and an end-to-end training has been performed. The proposed training method with variable beta uses VAE as a feature extractor and classifier rather than just being a probabilistic generative model, which further improved the performance of the overall model. The proposed scheme reduces the needs of domain/expertise knowledge on time-series data. The proposed method has also been validated in the presence of noise. The proposed approach is validated through two case studies by utilizing rotating machinery datasets: First, on the case western reserve university vibration dataset (VD), and second, on the air compressor acoustic dataset (AD). Highest accuracies obtained are 99.93% and 99.91% on case western reserve university VD and air compressor AD, respectively, using the proposed scheme. Finally, a comparative study has been presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
qm完成签到,获得积分10
1秒前
1秒前
飘逸问薇完成签到 ,获得积分10
1秒前
1秒前
努力努力完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
Grace发布了新的文献求助10
4秒前
巩志成发布了新的文献求助10
4秒前
4秒前
天天快乐应助侯zijun采纳,获得10
4秒前
田様应助迷人秋翠采纳,获得10
5秒前
111发布了新的文献求助10
5秒前
peiyaoyan完成签到,获得积分10
5秒前
5秒前
5秒前
刘柳完成签到 ,获得积分10
6秒前
愉快又莲完成签到,获得积分10
6秒前
mksw发布了新的文献求助10
6秒前
东方巧曼完成签到,获得积分10
6秒前
CatLight完成签到,获得积分20
7秒前
meimei发布了新的文献求助10
7秒前
thousandlong发布了新的文献求助10
7秒前
羞涩的大象完成签到,获得积分10
7秒前
7秒前
蓝胖子完成签到,获得积分10
7秒前
ALSI发布了新的文献求助30
7秒前
烟花应助cbx采纳,获得10
8秒前
houxy完成签到 ,获得积分10
8秒前
孙畅完成签到 ,获得积分10
8秒前
奇异果果发布了新的文献求助10
8秒前
柚C美式完成签到 ,获得积分10
9秒前
ganhykk完成签到,获得积分20
9秒前
Amyfighter完成签到,获得积分10
9秒前
研友_P85D6Z发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659101
求助须知:如何正确求助?哪些是违规求助? 4825945
关于积分的说明 15085232
捐赠科研通 4817760
什么是DOI,文献DOI怎么找? 2578352
邀请新用户注册赠送积分活动 1532998
关于科研通互助平台的介绍 1491722