Fault Diagnosis of Machines Using Deep Convolutional Beta-Variational Autoencoder

计算机科学 自编码 判别式 人工智能 随机森林 停工期 深度学习 模式识别(心理学) 数据挖掘 机器学习 操作系统
作者
Gaurav Dewangan,Seetaram Maurya
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:3 (2): 287-296 被引量:25
标识
DOI:10.1109/tai.2021.3110835
摘要

Industries are using fault diagnosis methods to prevent any downtime, which eventually led them to make profits and take necessary steps beforehand to avoid any mishaps. In recent years, deep learning methods have shown extraordinary performance in massive data applications with advancement in computing power. In this article, a novel intelligent fault diagnosis scheme based on deep convolutional variable-beta variational autoencoder (VAE) is proposed to extract discriminative features. A new min–max algorithm for data points reduction and a random sampling technique to get 2-D data has been proposed. The proposed fault diagnosis combines all intermediate steps (from preprocessing to classification) in a single framework, and an end-to-end training has been performed. The proposed training method with variable beta uses VAE as a feature extractor and classifier rather than just being a probabilistic generative model, which further improved the performance of the overall model. The proposed scheme reduces the needs of domain/expertise knowledge on time-series data. The proposed method has also been validated in the presence of noise. The proposed approach is validated through two case studies by utilizing rotating machinery datasets: First, on the case western reserve university vibration dataset (VD), and second, on the air compressor acoustic dataset (AD). Highest accuracies obtained are 99.93% and 99.91% on case western reserve university VD and air compressor AD, respectively, using the proposed scheme. Finally, a comparative study has been presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
隐形曼青应助复杂海豚采纳,获得10
1秒前
Owen应助超越辣鸡的梅吹采纳,获得10
1秒前
1秒前
3秒前
3秒前
呃呃呃发布了新的文献求助10
3秒前
LCXLA发布了新的文献求助20
4秒前
suchen发布了新的文献求助10
4秒前
在水一方应助北媛采纳,获得10
4秒前
yxc发布了新的文献求助10
4秒前
丘比特应助Fabio采纳,获得10
5秒前
浮游应助胡子采纳,获得10
5秒前
5秒前
小马甲应助落花生采纳,获得10
6秒前
6秒前
智博36发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
千秋叶发布了新的文献求助10
7秒前
科目三应助清子采纳,获得10
8秒前
科研通AI6应助元素搬运工采纳,获得30
8秒前
9秒前
小乐驳回了ding应助
9秒前
9秒前
10秒前
倩倩发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
防弹小航完成签到,获得积分10
13秒前
13秒前
隐形曼青应助peer采纳,获得20
13秒前
a812_wangwang完成签到,获得积分10
13秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997