Fault Diagnosis of Machines Using Deep Convolutional Beta-Variational Autoencoder

计算机科学 自编码 判别式 人工智能 随机森林 停工期 深度学习 模式识别(心理学) 数据挖掘 机器学习 操作系统
作者
Gaurav Dewangan,Seetaram Maurya
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:3 (2): 287-296 被引量:25
标识
DOI:10.1109/tai.2021.3110835
摘要

Industries are using fault diagnosis methods to prevent any downtime, which eventually led them to make profits and take necessary steps beforehand to avoid any mishaps. In recent years, deep learning methods have shown extraordinary performance in massive data applications with advancement in computing power. In this article, a novel intelligent fault diagnosis scheme based on deep convolutional variable-beta variational autoencoder (VAE) is proposed to extract discriminative features. A new min–max algorithm for data points reduction and a random sampling technique to get 2-D data has been proposed. The proposed fault diagnosis combines all intermediate steps (from preprocessing to classification) in a single framework, and an end-to-end training has been performed. The proposed training method with variable beta uses VAE as a feature extractor and classifier rather than just being a probabilistic generative model, which further improved the performance of the overall model. The proposed scheme reduces the needs of domain/expertise knowledge on time-series data. The proposed method has also been validated in the presence of noise. The proposed approach is validated through two case studies by utilizing rotating machinery datasets: First, on the case western reserve university vibration dataset (VD), and second, on the air compressor acoustic dataset (AD). Highest accuracies obtained are 99.93% and 99.91% on case western reserve university VD and air compressor AD, respectively, using the proposed scheme. Finally, a comparative study has been presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tananna完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
3秒前
holmes完成签到,获得积分10
3秒前
ZHY发布了新的文献求助10
4秒前
爱学习的佩奇完成签到,获得积分10
4秒前
终梦发布了新的文献求助10
4秒前
小浣熊完成签到,获得积分10
4秒前
5秒前
烂漫伟祺发布了新的文献求助10
5秒前
hyc完成签到,获得积分20
5秒前
羞涩的泽洋关注了科研通微信公众号
5秒前
Willer完成签到,获得积分10
5秒前
holmes发布了新的文献求助10
6秒前
可爱的函函应助KK采纳,获得10
6秒前
卷卷发布了新的文献求助10
6秒前
6秒前
6秒前
Neo完成签到,获得积分10
6秒前
搜集达人应助紧张的惜梦采纳,获得20
7秒前
壮观的不评完成签到 ,获得积分10
7秒前
8秒前
8秒前
科研通AI5应助简单远山采纳,获得10
8秒前
顺利的爆米花完成签到 ,获得积分10
11秒前
net80yhm发布了新的文献求助10
11秒前
12秒前
涵霸天发布了新的文献求助10
13秒前
ouuang完成签到,获得积分20
13秒前
李爱国应助羊小受采纳,获得10
13秒前
烂漫伟祺完成签到,获得积分20
13秒前
科研小白发布了新的文献求助10
13秒前
吴洲凤发布了新的文献求助10
14秒前
14秒前
完美世界应助缓慢枕头采纳,获得10
14秒前
gao完成签到,获得积分10
14秒前
嗯嗯完成签到 ,获得积分10
14秒前
15秒前
小马甲应助机密塔采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911379
求助须知:如何正确求助?哪些是违规求助? 4186919
关于积分的说明 13001902
捐赠科研通 3954732
什么是DOI,文献DOI怎么找? 2168427
邀请新用户注册赠送积分活动 1186877
关于科研通互助平台的介绍 1094208