Fault Diagnosis of Machines Using Deep Convolutional Beta-Variational Autoencoder

计算机科学 自编码 判别式 人工智能 随机森林 停工期 深度学习 模式识别(心理学) 数据挖掘 机器学习 操作系统
作者
Gaurav Dewangan,Seetaram Maurya
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:3 (2): 287-296 被引量:25
标识
DOI:10.1109/tai.2021.3110835
摘要

Industries are using fault diagnosis methods to prevent any downtime, which eventually led them to make profits and take necessary steps beforehand to avoid any mishaps. In recent years, deep learning methods have shown extraordinary performance in massive data applications with advancement in computing power. In this article, a novel intelligent fault diagnosis scheme based on deep convolutional variable-beta variational autoencoder (VAE) is proposed to extract discriminative features. A new min–max algorithm for data points reduction and a random sampling technique to get 2-D data has been proposed. The proposed fault diagnosis combines all intermediate steps (from preprocessing to classification) in a single framework, and an end-to-end training has been performed. The proposed training method with variable beta uses VAE as a feature extractor and classifier rather than just being a probabilistic generative model, which further improved the performance of the overall model. The proposed scheme reduces the needs of domain/expertise knowledge on time-series data. The proposed method has also been validated in the presence of noise. The proposed approach is validated through two case studies by utilizing rotating machinery datasets: First, on the case western reserve university vibration dataset (VD), and second, on the air compressor acoustic dataset (AD). Highest accuracies obtained are 99.93% and 99.91% on case western reserve university VD and air compressor AD, respectively, using the proposed scheme. Finally, a comparative study has been presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉樱桃发布了新的文献求助50
2秒前
2秒前
哈哈哈完成签到 ,获得积分10
5秒前
5秒前
呆呆瓜发布了新的文献求助10
9秒前
小马完成签到,获得积分10
10秒前
冷傲的宫苴完成签到,获得积分20
10秒前
11秒前
11秒前
12秒前
12秒前
12秒前
无限的跳跳糖完成签到 ,获得积分10
16秒前
kkdkg发布了新的文献求助10
17秒前
哈哈哈发布了新的文献求助10
17秒前
机器猫发布了新的文献求助30
18秒前
19秒前
19秒前
liii完成签到 ,获得积分10
20秒前
Liang完成签到 ,获得积分10
20秒前
20秒前
Vamos发布了新的文献求助10
23秒前
24秒前
wxy发布了新的文献求助10
25秒前
顾矜应助lilili采纳,获得10
28秒前
麦子发布了新的文献求助10
31秒前
32秒前
JamesPei应助摩羯座小黄鸭采纳,获得10
34秒前
Rita发布了新的文献求助10
35秒前
传奇3应助wxy采纳,获得10
36秒前
高兴小珍发布了新的文献求助10
36秒前
小蘑菇应助kkdkg采纳,获得10
41秒前
42秒前
典雅不凡完成签到 ,获得积分10
43秒前
爆米花应助Alan采纳,获得10
43秒前
小马甲应助高兴小珍采纳,获得10
44秒前
45秒前
46秒前
只是天仙子完成签到,获得积分10
47秒前
光芒万丈完成签到,获得积分10
49秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812311
关于积分的说明 7895133
捐赠科研通 2471181
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086