Artificial Intelligence Based Body Sensor Network Framework—Narrative Review: Proposing an End-to-End Framework using Wearable Sensors, Real-Time Location Systems and Artificial Intelligence/Machine Learning Algorithms for Data Collection, Data Mining and Knowledge Discovery in Sports and Healthcare

计算机科学 机器学习 可穿戴计算机 人工智能 传感器融合 大数据 无线传感器网络 领域(数学) 数据收集 数据预处理 数据挖掘 嵌入式系统 计算机网络 数学 统计 纯数学
作者
Ashwin Phatak,Franz-Georg Wieland,Kartik Vempala,Frederik Volkmar,Daniel Memmert
出处
期刊:Sports Medicine - Open [Springer Nature]
卷期号:7 (1) 被引量:34
标识
DOI:10.1186/s40798-021-00372-0
摘要

Abstract With the rising amount of data in the sports and health sectors, a plethora of applications using big data mining have become possible. Multiple frameworks have been proposed to mine, store, preprocess, and analyze physiological vitals data using artificial intelligence and machine learning algorithms. Comparatively, less research has been done to collect potentially high volume, high-quality ‘big data’ in an organized, time-synchronized, and holistic manner to solve similar problems in multiple fields. Although a large number of data collection devices exist in the form of sensors. They are either highly specialized, univariate and fragmented in nature or exist in a lab setting. The current study aims to propose artificial intelligence-based body sensor network framework (AIBSNF), a framework for strategic use of body sensor networks (BSN), which combines with real-time location system (RTLS) and wearable biosensors to collect multivariate, low noise, and high-fidelity data. This facilitates gathering of time-synchronized location and physiological vitals data, which allows artificial intelligence and machine learning (AI/ML)-based time series analysis. The study gives a brief overview of wearable sensor technology, RTLS, and provides use cases of AI/ML algorithms in the field of sensor fusion. The study also elaborates sample scenarios using a specific sensor network consisting of pressure sensors (insoles), accelerometers, gyroscopes, ECG, EMG, and RTLS position detectors for particular applications in the field of health care and sports. The AIBSNF may provide a solid blueprint for conducting research and development, forming a smooth end-to-end pipeline from data collection using BSN, RTLS and final stage analytics based on AI/ML algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽若宝宝应助lixuegang2023采纳,获得10
刚刚
赵丽红完成签到 ,获得积分10
刚刚
斯文败类应助ww采纳,获得10
1秒前
1秒前
廾匸完成签到,获得积分10
1秒前
刘wt发布了新的文献求助10
1秒前
巫马尔槐完成签到,获得积分10
1秒前
2秒前
3秒前
kaw发布了新的文献求助10
4秒前
tesla发布了新的文献求助10
4秒前
AD钙钙钙发布了新的文献求助10
5秒前
6秒前
6秒前
森sen发布了新的文献求助10
6秒前
minekirito完成签到,获得积分20
6秒前
6秒前
英姑应助kaw采纳,获得10
6秒前
7秒前
星辰大海应助在九月采纳,获得10
7秒前
7秒前
依旧完成签到,获得积分10
7秒前
7秒前
小一发布了新的文献求助10
8秒前
所所应助刘wt采纳,获得10
8秒前
小一发布了新的文献求助10
8秒前
MER完成签到 ,获得积分10
9秒前
9秒前
9秒前
小一发布了新的文献求助10
9秒前
小一发布了新的文献求助10
9秒前
9秒前
小一发布了新的文献求助10
9秒前
小一发布了新的文献求助10
9秒前
luna发布了新的文献求助10
9秒前
sss发布了新的文献求助10
10秒前
在水一方应助linshunan采纳,获得10
10秒前
kaw完成签到,获得积分20
10秒前
小一发布了新的文献求助30
10秒前
Gilana发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553582
求助须知:如何正确求助?哪些是违规求助? 3129521
关于积分的说明 9382550
捐赠科研通 2828636
什么是DOI,文献DOI怎么找? 1555065
邀请新用户注册赠送积分活动 725800
科研通“疑难数据库(出版商)”最低求助积分说明 715212