Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone

眼底(子宫) 医学 眼底摄影 眼底照相机 青光眼 计算机视觉 验光服务 检眼镜 人工智能 计算机科学 眼科 视网膜 荧光血管造影
作者
Ken-ichi Nakahara,Ryo Asaoka,Masaki Tanito,Naomi Shibata,Keita Mitsuhashi,Yuri Fujino,Masato Matsuura,Tatsuya Inoue,Keiko Azuma,Ryo Obata,Hiroshi Murata
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:106 (4): 587-592 被引量:11
标识
DOI:10.1136/bjophthalmol-2020-318107
摘要

To validate a deep learning algorithm to diagnose glaucoma from fundus photography obtained with a smartphone.A training dataset consisting of 1364 colour fundus photographs with glaucomatous indications and 1768 colour fundus photographs without glaucomatous features was obtained using an ordinary fundus camera. The testing dataset consisted of 73 eyes of 73 patients with glaucoma and 89 eyes of 89 normative subjects. In the testing dataset, fundus photographs were acquired using an ordinary fundus camera and a smartphone. A deep learning algorithm was developed to diagnose glaucoma using a training dataset. The trained neural network was evaluated by prediction result of the diagnostic of glaucoma or normal over the test datasets, using images from both an ordinary fundus camera and a smartphone. Diagnostic accuracy was assessed using the area under the receiver operating characteristic curve (AROC).The AROC with a fundus camera was 98.9% and 84.2% with a smartphone. When validated only in eyes with advanced glaucoma (mean deviation value < -12 dB, N=26), the AROC with a fundus camera was 99.3% and 90.0% with a smartphone. There were significant differences between these AROC values using different cameras.The usefulness of a deep learning algorithm to automatically screen for glaucoma from smartphone-based fundus photographs was validated. The algorithm had a considerable high diagnostic ability, particularly in eyes with advanced glaucoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司天保发布了新的文献求助10
1秒前
dypdyp完成签到 ,获得积分10
1秒前
liuyanjun应助韩凡采纳,获得10
2秒前
车王完成签到,获得积分10
2秒前
3秒前
桐桐应助yangyang采纳,获得10
3秒前
4秒前
wqy完成签到,获得积分10
4秒前
哈哈哈哈哈完成签到,获得积分10
6秒前
迟大猫应助阿司匹林采纳,获得20
7秒前
7秒前
8秒前
8秒前
共享精神应助晨阳采纳,获得10
9秒前
9秒前
冰棒比冰冰完成签到 ,获得积分10
9秒前
华仔应助陈cf77采纳,获得10
9秒前
jinyi完成签到 ,获得积分10
10秒前
NexusExplorer应助粥粥sqk采纳,获得10
11秒前
cheaper发布了新的文献求助10
12秒前
山河入怀发布了新的文献求助10
13秒前
13秒前
Wtony发布了新的文献求助10
13秒前
大个应助Hahahahahahah采纳,获得10
13秒前
13秒前
儒雅寻菱发布了新的文献求助10
13秒前
13秒前
朱小小完成签到,获得积分10
13秒前
14秒前
15秒前
汉堡包应助车王采纳,获得10
16秒前
金丝鼠发布了新的文献求助10
17秒前
17秒前
调皮的千万完成签到,获得积分10
17秒前
lzyjcl完成签到,获得积分10
17秒前
Yanan完成签到 ,获得积分10
17秒前
yangyang发布了新的文献求助10
18秒前
罗瑞发布了新的文献求助10
19秒前
晨阳发布了新的文献求助10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
The Foraging Behavior of the Honey Bee (Apis mellifera, L.) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3677338
求助须知:如何正确求助?哪些是违规求助? 3231204
关于积分的说明 9794575
捐赠科研通 2942258
什么是DOI,文献DOI怎么找? 1613094
邀请新用户注册赠送积分活动 761411
科研通“疑难数据库(出版商)”最低求助积分说明 736832