A Combined Network Pharmacology and Molecular Docking Approach to Investigate Candidate Active Components and Multitarget Mechanisms of Hemerocallis Flowers on Antidepressant Effect

抗抑郁药 对接(动物) 药理学 计算生物学 计算机科学 传统医学 生物 医学 神经科学 护理部 海马体
作者
Tiancheng Ma,Yu Sun,Chang Jiang,Wei-Lin Xiong,Tingxu Yan,Bo Wu,Ying Jia
出处
期刊:Evidence-based Complementary and Alternative Medicine [Hindawi Limited]
卷期号:2021: 1-17 被引量:6
标识
DOI:10.1155/2021/7127129
摘要

Objective. The purpose of our research is to systematically explore the multiple mechanisms of Hemerocallis fulva Flowers (HF) on depressive disorder (DD). Methods. The components of HF were searched from the literature. The targets of components were obtained from PharmMapper. After that, Cytoscape software was used to build a component-target network. The targets of DD were collected from DisGeNET, PharmGKB, TTD, and OMIM. Protein-protein interactions (PPIs) among the DD targets were executed to screen the key targets. Afterward, the GO and KEGG pathway enrichment analysis were performed by the KOBAS database. A compound-target-KEGG pathway network was built to analyze the key compounds and targets. Finally, the potential active substances and targets were validated by molecular docking. Results. A total of 55 active compounds in HF, 646 compound-related targets, and 527 DD-related targets were identified from public databases. After treated with PPI, 219 key targets of DD were acquired. The gene enrichment analysis suggested that HF probably benefits DD patients by modulating pathways related to the nervous system, endocrine system, amino acid metabolism, and signal transduction. The network analysis showed the critical components and targets of HF on DD. Results of molecular docking increased the reliability of this study. Conclusions. It predicted and verified the pharmacological and molecular mechanism of HF against DD from a holistic perspective, which will also lay a foundation for further experimental research and rational clinical application of DD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绥遇则安完成签到 ,获得积分10
1秒前
可靠从云完成签到 ,获得积分10
2秒前
圆圆完成签到,获得积分10
3秒前
3秒前
清脆忆南完成签到 ,获得积分10
4秒前
迷路的海云完成签到 ,获得积分10
5秒前
qwe关闭了qwe文献求助
7秒前
7秒前
郭京京完成签到 ,获得积分10
7秒前
汪少侠完成签到,获得积分10
7秒前
嗯哼应助冲冲冲采纳,获得20
8秒前
又见白龙完成签到,获得积分10
8秒前
沉静富完成签到 ,获得积分10
8秒前
conghuang完成签到,获得积分10
8秒前
李ye发布了新的文献求助10
8秒前
yaoyaoyao完成签到 ,获得积分10
8秒前
lbx完成签到,获得积分10
9秒前
万能图书馆应助差劲先生采纳,获得10
9秒前
三年三班三井寿完成签到,获得积分10
9秒前
整齐冰凡完成签到 ,获得积分10
10秒前
嘀嘀哒哒完成签到,获得积分10
10秒前
besatified发布了新的文献求助10
11秒前
快乐的鱼完成签到,获得积分10
12秒前
既然寄了,那就开摆完成签到 ,获得积分10
13秒前
chen发布了新的文献求助10
13秒前
feishao完成签到,获得积分10
14秒前
Ray完成签到,获得积分10
14秒前
欣慰的书本完成签到 ,获得积分10
17秒前
laola完成签到,获得积分10
19秒前
珂珂完成签到 ,获得积分10
19秒前
Ll完成签到 ,获得积分10
19秒前
犹豫小海豚完成签到,获得积分10
19秒前
传奇3应助李ye采纳,获得10
19秒前
20秒前
衣蝉完成签到 ,获得积分10
20秒前
叶子完成签到,获得积分10
21秒前
务实土豆完成签到 ,获得积分10
22秒前
hhydeppt完成签到,获得积分10
22秒前
XIEMIN完成签到,获得积分10
22秒前
LuoYR@SZU完成签到,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099821
求助须知:如何正确求助?哪些是违规求助? 2751309
关于积分的说明 7612489
捐赠科研通 2403104
什么是DOI,文献DOI怎么找? 1275188
科研通“疑难数据库(出版商)”最低求助积分说明 616293
版权声明 599053