Modulating α-Synuclein Liquid–Liquid Phase Separation

化学 生物物理学 内在无序蛋白质 液态液体 动力学 体外 色谱法 生物化学 生物 物理 量子力学
作者
Ajay Singh Sawner,Soumik Ray,Preeti Yadav,Semanti Mukherjee,Rajlaxmi Panigrahi,Manisha Poudyal,Komal Patel,Dhiman Ghosh,Eric Kummerant,Ashutosh Kumar,Roland Riek,Samir K. Maji
出处
期刊:Biochemistry [American Chemical Society]
卷期号:60 (48): 3676-3696 被引量:103
标识
DOI:10.1021/acs.biochem.1c00434
摘要

Liquid-liquid phase separation (LLPS) is a crucial phenomenon for the formation of functional membraneless organelles. However, LLPS is also responsible for protein aggregation in various neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease (PD). Recently, several reports, including ours, have shown that α-synuclein (α-Syn) undergoes LLPS and a subsequent liquid-to-solid phase transition, which leads to amyloid fibril formation. However, how the environmental (and experimental) parameters modulate the α-Syn LLPS remains elusive. Here, we show that in vitro α-Syn LLPS is strongly dependent on the presence of salts, which allows charge neutralization at both terminal segments of protein and therefore promotes hydrophobic interactions supportive for LLPS. Using various purification methods and experimental conditions, we showed, depending upon conditions, α-Syn undergoes either spontaneous (instantaneous) or delayed LLPS. Furthermore, we delineate that the kinetics of liquid droplet formation (i.e., the critical concentration and critical time) is relative and can be modulated by the salt/counterion concentration, pH, presence of surface, PD-associated multivalent cations, and N-terminal acetylation, which are all known to regulate α-Syn aggregation in vitro. Together, our observations suggest that α-Syn LLPS and subsequent liquid-to-solid phase transition could be pathological, which can be triggered only under disease-associated conditions (high critical concentration and/or conditions promoting α-Syn self-assembly). This study will significantly improve our understanding of the molecular mechanisms of α-Syn LLPS and the liquid-to-solid transition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
solobang发布了新的文献求助10
刚刚
CodeCraft应助Jocelyn7采纳,获得10
刚刚
秋之月完成签到,获得积分10
刚刚
1秒前
cheche关注了科研通微信公众号
1秒前
2秒前
科研小民工应助kento采纳,获得50
3秒前
完美世界应助小萌采纳,获得10
4秒前
4秒前
gaoww完成签到,获得积分10
4秒前
5秒前
WZ0904发布了新的文献求助10
5秒前
5秒前
lab完成签到 ,获得积分0
5秒前
小蘑菇应助今今采纳,获得10
6秒前
CodeCraft应助秋之月采纳,获得10
6秒前
I1waml完成签到 ,获得积分10
6秒前
6秒前
guygun完成签到,获得积分10
6秒前
zho发布了新的文献求助10
7秒前
独特亦旋发布了新的文献求助10
7秒前
8秒前
研友_LOqqmZ完成签到,获得积分10
9秒前
9秒前
英俊的铭应助文献查找采纳,获得10
9秒前
solobang发布了新的文献求助10
9秒前
Jasper应助老迟到的书雁采纳,获得10
12秒前
orixero应助小二采纳,获得10
12秒前
13秒前
13秒前
simple完成签到,获得积分10
13秒前
caoyy发布了新的文献求助10
13秒前
赵小可可可可完成签到,获得积分10
15秒前
小萌发布了新的文献求助10
16秒前
weiv发布了新的文献求助10
16秒前
海科科发布了新的文献求助10
17秒前
陌上花完成签到,获得积分10
17秒前
我是站长才怪应助微笑襄采纳,获得10
18秒前
caoyy完成签到,获得积分10
19秒前
JamesPei应助独特亦旋采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824