Image-based surface scratch detection on architectural glass panels using deep learning approach

刮擦 卷积神经网络 分割 人工智能 深度学习 计算机科学 过程(计算) 材料科学 人工神经网络 计算机视觉 复合材料 操作系统
作者
Zhufeng Pan,Jian Yang,Xing-er Wang,Feiliang Wang,Iftikhar Azim,Chenyu Wang
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:282: 122717-122717 被引量:34
标识
DOI:10.1016/j.conbuildmat.2021.122717
摘要

Abstract As a transparent and traditional building material, glass products such as glass facade are vital components of buildings. However, the surface scratches generated in the manufacturing process or emerging in the service stage such as windborne debris impacts may lead to remarkable strength degradation of glass material. In order to assess the fracture possibility of glass components, the size and number of scratches should be monitored during their lifecycle. Automatic scratch detection of architectural glass therefore remains a necessary task for civil engineers. A pixel-level instance segmentation model using Mask and region-based convolutional neural network (Mask R-CNN) was proposed for scratches detection on transparent glass surface. Images with scratches were firstly collected by a tailor-made automated microscopic camera scanning system to build the training and validation dataset. Test results demonstrate that the trained network is satisfactory, achieving a mean average precision of 96.5% with low missing and false rate under background interference. A comparison between the proposed model and another segmentation method YOLACT indicates that the proposed model has better performance in both detection and segmentation accuracy. The proposed deep learning-based approach can better support the development of non-contact defect assessment techniques for transparent building materials such as glass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
丝丝完成签到,获得积分10
3秒前
Hello应助优雅的白山采纳,获得10
4秒前
西西完成签到,获得积分10
4秒前
kaia完成签到,获得积分10
4秒前
joyce930728发布了新的文献求助30
4秒前
5秒前
传奇3应助3dyf采纳,获得10
5秒前
5秒前
路瑶瑶完成签到,获得积分10
6秒前
文舒完成签到,获得积分10
6秒前
6秒前
以舟发布了新的文献求助10
7秒前
8秒前
香蕉觅云应助fpy采纳,获得10
8秒前
鲤鱼问雁完成签到,获得积分10
8秒前
阿玉发布了新的文献求助10
8秒前
好好学习完成签到,获得积分10
9秒前
9秒前
o10发布了新的文献求助10
10秒前
加油加油发布了新的文献求助10
10秒前
若雨凌风应助咯咯咯采纳,获得20
11秒前
11秒前
万能图书馆应助hx采纳,获得10
12秒前
饱满的凡儿完成签到,获得积分10
13秒前
wei完成签到,获得积分10
13秒前
以舟完成签到,获得积分10
13秒前
搜集达人应助Gezelligheid.采纳,获得10
13秒前
捉一只小鱼完成签到,获得积分10
14秒前
sweety0721完成签到,获得积分10
14秒前
wanye完成签到,获得积分10
14秒前
14秒前
syvshc完成签到,获得积分0
14秒前
深藏blue完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011501
求助须知:如何正确求助?哪些是违规求助? 3551133
关于积分的说明 11307791
捐赠科研通 3285391
什么是DOI,文献DOI怎么找? 1811040
邀请新用户注册赠送积分活动 886767
科研通“疑难数据库(出版商)”最低求助积分说明 811636