Image-based surface scratch detection on architectural glass panels using deep learning approach

刮擦 卷积神经网络 分割 人工智能 深度学习 计算机科学 过程(计算) 材料科学 人工神经网络 计算机视觉 复合材料 操作系统
作者
Zhufeng Pan,Jian Yang,Xing-er Wang,Feiliang Wang,Iftikhar Azim,Chenyu Wang
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:282: 122717-122717 被引量:36
标识
DOI:10.1016/j.conbuildmat.2021.122717
摘要

Abstract As a transparent and traditional building material, glass products such as glass facade are vital components of buildings. However, the surface scratches generated in the manufacturing process or emerging in the service stage such as windborne debris impacts may lead to remarkable strength degradation of glass material. In order to assess the fracture possibility of glass components, the size and number of scratches should be monitored during their lifecycle. Automatic scratch detection of architectural glass therefore remains a necessary task for civil engineers. A pixel-level instance segmentation model using Mask and region-based convolutional neural network (Mask R-CNN) was proposed for scratches detection on transparent glass surface. Images with scratches were firstly collected by a tailor-made automated microscopic camera scanning system to build the training and validation dataset. Test results demonstrate that the trained network is satisfactory, achieving a mean average precision of 96.5% with low missing and false rate under background interference. A comparison between the proposed model and another segmentation method YOLACT indicates that the proposed model has better performance in both detection and segmentation accuracy. The proposed deep learning-based approach can better support the development of non-contact defect assessment techniques for transparent building materials such as glass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐观黎云完成签到,获得积分10
1秒前
杏里关注了科研通微信公众号
1秒前
星辰大海应助Huang采纳,获得10
1秒前
默默善愁发布了新的文献求助50
2秒前
2秒前
Alpha应助怡然的寻桃采纳,获得10
2秒前
大力帽子应助Haj1mi采纳,获得10
2秒前
深情安青应助ycy采纳,获得10
2秒前
领导范儿应助儒雅致远采纳,获得10
2秒前
泡泡儿发布了新的文献求助10
3秒前
阳光的桐完成签到,获得积分10
4秒前
5秒前
岳维芸发布了新的文献求助10
5秒前
好久不见应助听话的寒烟采纳,获得30
5秒前
xixi发布了新的文献求助30
6秒前
shushu完成签到 ,获得积分10
6秒前
完美世界应助yuaner采纳,获得10
6秒前
libe发布了新的文献求助10
7秒前
朴素的怜雪完成签到,获得积分10
7秒前
害怕的靖巧完成签到,获得积分10
8秒前
8秒前
wanci应助独特的采纳,获得10
9秒前
tiptip应助Wu采纳,获得10
9秒前
PAPA完成签到,获得积分10
10秒前
Orange应助renwoxing采纳,获得10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
友好锦程完成签到,获得积分20
13秒前
慕青应助弯刀划过红玫瑰采纳,获得10
13秒前
hyf发布了新的文献求助10
15秒前
天天快乐应助求知的周采纳,获得10
15秒前
15秒前
16秒前
Abyxwz发布了新的文献求助10
17秒前
17秒前
chu发布了新的文献求助10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694967
求助须知:如何正确求助?哪些是违规求助? 5099560
关于积分的说明 15214900
捐赠科研通 4851435
什么是DOI,文献DOI怎么找? 2602325
邀请新用户注册赠送积分活动 1554189
关于科研通互助平台的介绍 1512137