药代动力学
活性代谢物
药理学
化学
口服
新陈代谢
医学
生物化学
作者
Tae‐Sung Koo,Dae‐Hyun Kim,Sung-Hoon Ahn,Kang‐Pil Kim,In‐Wha Kim,Seung‐Yong Seo,Young‐Ger Suh,Dae‐Duk Kim,Chang‐Koo Shim,Suk‐Jae Chung
摘要
The objective of this study was to characterize the extent of the formation of the active (trans-alcohol form) and inactive (cis-alcohol) metabolites of loxoprofen and to compare the kinetics after its intragastric, intravenous, and intramuscular administrations in rats. After intravenous administration of the drug at doses of 5–20 mg/kg, the clearance and the volume of distribution for loxoprofen, and the ratios of the AUC for the metabolites to the parent drug were not statistically different with the dosage; the formation clearances were 1.08 and 0.87 mL/min/kg for the active and its isomeric metabolite, respectively. After the intragastric, intravenous, or intramuscular administration, AUC for loxoprofen and the metabolites at a dose of 10 mg/kg were not statistically different for the different routes of administration. The formation of the metabolites with the concomitant loss of loxoprofen was found in incubations with liver homogenates and blood but not with a muscle homogenate or plasma, indicating that the conversion of loxoprofen to the metabolites may occur both in the liver and extraheptic tissue(s). Thus, approximately 22% of the loxoprofen may have been converted to the active metabolite in the liver and the extraheptic tissue(s) and the pharmacokinetics of the active metabolite was independent of the route of administration. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association The objective of this study was to characterize the extent of the formation of the active (trans-alcohol form) and inactive (cis-alcohol) metabolites of loxoprofen and to compare the kinetics after its intragastric, intravenous, and intramuscular administrations in rats. After intravenous administration of the drug at doses of 5–20 mg/kg, the clearance and the volume of distribution for loxoprofen, and the ratios of the AUC for the metabolites to the parent drug were not statistically different with the dosage; the formation clearances were 1.08 and 0.87 mL/min/kg for the active and its isomeric metabolite, respectively. After the intragastric, intravenous, or intramuscular administration, AUC for loxoprofen and the metabolites at a dose of 10 mg/kg were not statistically different for the different routes of administration. The formation of the metabolites with the concomitant loss of loxoprofen was found in incubations with liver homogenates and blood but not with a muscle homogenate or plasma, indicating that the conversion of loxoprofen to the metabolites may occur both in the liver and extraheptic tissue(s). Thus, approximately 22% of the loxoprofen may have been converted to the active metabolite in the liver and the extraheptic tissue(s) and the pharmacokinetics of the active metabolite was independent of the route of administration. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association
科研通智能强力驱动
Strongly Powered by AbleSci AI