亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Causality and Persistence in Ecological Systems: A Nonparametric Spectral Granger Causality Approach

因果关系(物理学) 格兰杰因果关系 计量经济学 非参数统计 计算机科学 多元统计 生态学 数学 生物 机器学习 物理 量子力学
作者
Matteo Detto,Annalisa Molini,Gabriel G. Katul,Paul C. Stoy,Sari Palmroth,Dennis D. Baldocchi
出处
期刊:The American Naturalist [The University of Chicago Press]
卷期号:179 (4): 524-535 被引量:67
标识
DOI:10.1086/664628
摘要

Directionality in coupling, defined as the linkage relating causes to their effects at a later time, can be used to explain the core dynamics of ecological systems by untangling direct and feedback relationships between the different components of the systems. Inferring causality from measured ecological variables sampled through time remains a formidable challenge further made difficult by the action of periodic drivers overlapping the natural dynamics of the system. Periodicity in the drivers can often mask the self-sustained oscillations originating from the autonomous dynamics. While linear and direct causal relationships are commonly addressed in the time domain, using the well-established machinery of Granger causality (G-causality), the presence of periodic forcing requires frequency-based statistics (e.g., the Fourier transform), able to distinguish coupling induced by oscillations in external drivers from genuine endogenous interactions. Recent nonparametric spectral extensions of G-causality to the frequency domain pave the way for the scale-by-scale decomposition of causality, which can improve our ability to link oscillatory behaviors of ecological networks to causal mechanisms. The performance of both spectral G-causality and its conditional extension for multivariate systems is explored in quantifying causal interactions within ecological networks. Through two case studies involving synthetic and actual time series, it is demonstrated that conditional G-causality outperforms standard G-causality in identifying causal links and their concomitant timescales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
20秒前
28秒前
矮小的白猫完成签到,获得积分10
31秒前
36秒前
38秒前
小刘小刘发布了新的文献求助10
42秒前
43秒前
量子星尘发布了新的文献求助10
45秒前
Yuanyuan发布了新的文献求助10
48秒前
51秒前
彭进水完成签到 ,获得积分10
55秒前
情怀应助小刘小刘采纳,获得80
1分钟前
1分钟前
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
JamesPei应助77采纳,获得10
1分钟前
阿K完成签到,获得积分10
1分钟前
sophy发布了新的文献求助20
1分钟前
1分钟前
默己完成签到 ,获得积分10
2分钟前
77发布了新的文献求助10
2分钟前
害羞的高跟鞋完成签到,获得积分20
2分钟前
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
77完成签到,获得积分10
2分钟前
3分钟前
奋斗的小研完成签到,获得积分10
3分钟前
里昂义务发布了新的文献求助30
3分钟前
3分钟前
Yuanyuan发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI6.1应助毛毛采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
老石完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788771
求助须知:如何正确求助?哪些是违规求助? 5711930
关于积分的说明 15473908
捐赠科研通 4916776
什么是DOI,文献DOI怎么找? 2646575
邀请新用户注册赠送积分活动 1594240
关于科研通互助平台的介绍 1548666