Causality and Persistence in Ecological Systems: A Nonparametric Spectral Granger Causality Approach

因果关系(物理学) 格兰杰因果关系 计量经济学 非参数统计 计算机科学 多元统计 生态学 数学 生物 机器学习 物理 量子力学
作者
Matteo Detto,Annalisa Molini,Gabriel G. Katul,Paul C. Stoy,Sari Palmroth,Dennis D. Baldocchi
出处
期刊:The American Naturalist [University of Chicago Press]
卷期号:179 (4): 524-535 被引量:67
标识
DOI:10.1086/664628
摘要

Directionality in coupling, defined as the linkage relating causes to their effects at a later time, can be used to explain the core dynamics of ecological systems by untangling direct and feedback relationships between the different components of the systems. Inferring causality from measured ecological variables sampled through time remains a formidable challenge further made difficult by the action of periodic drivers overlapping the natural dynamics of the system. Periodicity in the drivers can often mask the self-sustained oscillations originating from the autonomous dynamics. While linear and direct causal relationships are commonly addressed in the time domain, using the well-established machinery of Granger causality (G-causality), the presence of periodic forcing requires frequency-based statistics (e.g., the Fourier transform), able to distinguish coupling induced by oscillations in external drivers from genuine endogenous interactions. Recent nonparametric spectral extensions of G-causality to the frequency domain pave the way for the scale-by-scale decomposition of causality, which can improve our ability to link oscillatory behaviors of ecological networks to causal mechanisms. The performance of both spectral G-causality and its conditional extension for multivariate systems is explored in quantifying causal interactions within ecological networks. Through two case studies involving synthetic and actual time series, it is demonstrated that conditional G-causality outperforms standard G-causality in identifying causal links and their concomitant timescales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hover完成签到,获得积分0
刚刚
莫晓岚完成签到,获得积分10
刚刚
123完成签到 ,获得积分10
1秒前
所所应助JSY采纳,获得30
1秒前
默默的立辉完成签到,获得积分10
1秒前
Yh完成签到,获得积分10
1秒前
引子完成签到,获得积分10
3秒前
机智的阿振完成签到,获得积分10
4秒前
KatzeBaliey完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
yar应助大饼采纳,获得10
7秒前
mammer应助一朵云采纳,获得20
7秒前
7秒前
Jason完成签到,获得积分10
8秒前
害羞凤灵完成签到,获得积分10
8秒前
芳芳完成签到,获得积分10
9秒前
风起枫落完成签到 ,获得积分10
9秒前
xkhxh完成签到 ,获得积分10
10秒前
zzq778发布了新的文献求助10
10秒前
小马甲应助双儿采纳,获得10
11秒前
江南烟雨如笙完成签到 ,获得积分10
12秒前
王洋应助枕星采纳,获得10
15秒前
笨笨寒天完成签到,获得积分10
15秒前
Hello应助zzq778采纳,获得10
15秒前
16秒前
铜豌豆完成签到 ,获得积分10
16秒前
稞小弟完成签到,获得积分10
16秒前
17秒前
19秒前
19秒前
zzzz发布了新的文献求助10
20秒前
小马完成签到,获得积分10
22秒前
22秒前
一朵云完成签到,获得积分10
23秒前
JSY发布了新的文献求助30
24秒前
浩铭完成签到,获得积分10
25秒前
Iven发布了新的文献求助10
25秒前
27秒前
29秒前
冷酷的天晴完成签到,获得积分10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029