Predicting Usual Interstitial Pneumonia Histopathology From Chest CT Imaging With Deep Learning

医学 组织病理学 寻常性间质性肺炎 放射科 接收机工作特性 特发性肺纤维化 间质性肺病 过敏性肺炎 病理 内科学
作者
Alex Bratt,James Williams,Grace Liu,Ananya Panda,Parth P. Patel,Lara Walkoff,Anne-Marie G. Sykes,Yasmeen K. Tandon,Christopher J. François,Daniel J. Blezek,Nicholas B. Larson,Bradley J. Erickson,Eunhee S. Yi,Teng Moua,Chi Wan Koo
出处
期刊:Chest [Elsevier]
卷期号:162 (4): 815-823 被引量:23
标识
DOI:10.1016/j.chest.2022.03.044
摘要

Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal form of interstitial lung disease (ILD) characterized by the absence of a known cause and usual interstitial pneumonitis (UIP) pattern on chest CT imaging and/or histopathology. Distinguishing UIP/IPF from other ILD subtypes is essential given different treatments and prognosis. Lung biopsy is necessary when noninvasive data are insufficient to render a confident diagnosis.Can we improve noninvasive diagnosis of UIP be improved by predicting ILD histopathology from CT scans by using deep learning?This study retrospectively identified a cohort of 1,239 patients in a multicenter database with pathologically proven ILD who had chest CT imaging. Each case was assigned a label based on histopathologic diagnosis (UIP or non-UIP). A custom deep learning model was trained to predict class labels from CT images (training set, n = 894) and was evaluated on a 198-patient test set. Separately, two subspecialty-trained radiologists manually labeled each CT scan in the test set according to the 2018 American Thoracic Society IPF guidelines. The performance of the model in predicting histopathologic class was compared against radiologists' performance by using area under the receiver-operating characteristic curve as the primary metric. Deep learning model reproducibility was compared against intra-rater and inter-rater radiologist reproducibility.For the entire cohort, mean patient age was 62 ± 12 years, and 605 patients were female (49%). Deep learning performance was superior to visual analysis in predicting histopathologic diagnosis (area under the receiver-operating characteristic curve, 0.87 vs 0.80, respectively; P < .05). Deep learning model reproducibility was significantly greater than radiologist inter-rater and intra-rater reproducibility (95% CI for difference in Krippendorff's alpha did not include zero).Deep learning may be superior to visual assessment in predicting UIP/IPF histopathology from CT imaging and may serve as an alternative to invasive lung biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZZ完成签到 ,获得积分10
1秒前
罗零完成签到 ,获得积分0
4秒前
靓丽的如南完成签到,获得积分10
5秒前
研友_VZG7GZ应助东西南北采纳,获得10
6秒前
共享精神应助矮小的乐菱采纳,获得10
7秒前
8秒前
fanfan完成签到,获得积分10
10秒前
q1010611084完成签到 ,获得积分10
11秒前
小辞芙芙完成签到 ,获得积分10
12秒前
zz发布了新的文献求助10
13秒前
14秒前
深情的一曲完成签到,获得积分10
16秒前
阳佟天川完成签到,获得积分10
16秒前
Hello应助Shan采纳,获得10
16秒前
Ryan完成签到,获得积分10
18秒前
18秒前
19秒前
悠旷完成签到 ,获得积分10
20秒前
21秒前
22秒前
努力发一区完成签到 ,获得积分10
23秒前
24秒前
zww发布了新的文献求助10
24秒前
欣欣完成签到 ,获得积分10
25秒前
hujingyan应助liuzengzhang666采纳,获得10
25秒前
26秒前
直率芮发布了新的文献求助10
28秒前
哈哈哈发布了新的文献求助10
29秒前
30秒前
32秒前
33秒前
34秒前
35秒前
35秒前
36秒前
优雅的凝阳完成签到 ,获得积分10
36秒前
麦田里的守望者完成签到,获得积分10
36秒前
直率芮完成签到,获得积分10
38秒前
纯牛奶发布了新的文献求助10
38秒前
依旧发布了新的文献求助10
39秒前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371589
求助须知:如何正确求助?哪些是违规求助? 2989704
关于积分的说明 8736799
捐赠科研通 2672949
什么是DOI,文献DOI怎么找? 1464289
科研通“疑难数据库(出版商)”最低求助积分说明 677484
邀请新用户注册赠送积分活动 668822