Clustering based on local density peaks and graph cut

聚类分析 计算机科学 相关聚类 CURE数据聚类算法 单连锁聚类 数据挖掘 图形 稳健性(进化) 树冠聚类算法 数学 算法 模式识别(心理学) 人工智能 理论计算机科学 生物化学 化学 基因
作者
Zhiguo Long,Yang Gao,Hua Meng,Yuqin Yao,Tianrui Li
出处
期刊:Information Sciences [Elsevier BV]
卷期号:600: 263-286 被引量:9
标识
DOI:10.1016/j.ins.2022.03.091
摘要

Clustering by fast search and find of density peaks (DPC) is a widely used and studied clustering algorithm. In this article, we notice that DPC can achieve highly accurate clustering results when restricted to local neighborhoods. Therefore, by investigating density information in local neighborhoods, we propose to capture latent structures in data with family trees, which can reflect density dominations among nearest neighbors of data. A data set will then be partitioned into multiple family trees. In order to obtain the final clustering result, instead of exploiting the error-prone allocation strategy of DPC, we first elaborately design a novel similarity measure for family trees, characterizing not only the distance between data points, but also the structure of trees. Then, we adapt graph cut for the corresponding connection graph to also take global structural information into account. Extensive experiments on both real-world and synthetic data sets show that the proposed algorithm can outperform several prominent clustering algorithms for most of the cases, including the DPC and spectral clustering algorithms and some of their latest variants. We also analyze the robustness of the proposed algorithm w.r.t. hyper-parameters and its time complexity, as well as the necessity of its components through ablation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八山完成签到,获得积分10
1秒前
上官若男应助SIHUONIANHUA采纳,获得10
1秒前
taotao发布了新的文献求助30
3秒前
量子星尘发布了新的文献求助10
3秒前
犹豫的期待完成签到,获得积分10
3秒前
脑洞疼应助18922406869采纳,获得30
4秒前
科研狗完成签到,获得积分10
4秒前
兜兜揣满糖完成签到 ,获得积分10
5秒前
深情安青应助内丹翠采纳,获得10
5秒前
努力发布了新的文献求助10
6秒前
aaa发布了新的文献求助10
7秒前
planto完成签到,获得积分10
10秒前
11秒前
乐乐应助xcx采纳,获得10
12秒前
今后应助chcmuer采纳,获得30
14秒前
zhang发布了新的文献求助10
15秒前
15秒前
精明问筠发布了新的文献求助10
16秒前
从笙发布了新的文献求助10
17秒前
FashionBoy应助jfc采纳,获得10
17秒前
无情的君浩应助Kevin采纳,获得30
18秒前
YANG完成签到,获得积分10
18秒前
19秒前
19秒前
YunfeiCao应助独特的尔风采纳,获得10
19秒前
Peix发布了新的文献求助10
20秒前
我是老大应助二三采纳,获得10
21秒前
SYLH应助孙博采纳,获得10
22秒前
taotao完成签到,获得积分10
22秒前
23秒前
所所应助青柠采纳,获得10
23秒前
TAOS完成签到,获得积分10
26秒前
NatKao发布了新的文献求助10
27秒前
27秒前
28秒前
顾矜应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952693
求助须知:如何正确求助?哪些是违规求助? 3498194
关于积分的说明 11090590
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801350