Cross‐machine intelligent fault diagnosis of gearbox based on deep learning and parameter transfer

过度拟合 卷积神经网络 学习迁移 断层(地质) 领域(数学分析) 计算机科学 联营 人工智能 特征(语言学) 领域(数学) 深度学习 人工神经网络 机器学习 数据挖掘 模式识别(心理学) 地质学 数学分析 哲学 语言学 地震学 数学 纯数学
作者
Te Han,Taotao Zhou,Yongyong Xiang,Dongxiang Jiang
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (3) 被引量:47
标识
DOI:10.1002/stc.2898
摘要

With the rapid development of artificial intelligence technologies, data-driven methods have significantly contributed to the intelligent monitoring and diagnosis of mechanical systems. However, the state-of-the-art approaches, especially the deep learning-based ones, implicitly assume the availability of large amounts of labeled fault data for supervised training, which is often infeasible due to the highly reliable system design in the field. In this research, a deep transfer convolutional neural network (CNN) scheme is proposed to enhance the diagnosis performance when dealing with insufficient training data in the target domain. By utilizing transfer learning, rich but relevant feature representation can be learnt from massive data in the source domain. The learnt weights and biases in the source domain are transferred to the target task as the initial parameter values. Then, the transferred parameters are properly fine-tuned with the small labeled datasets in the target domain. To avoid overfitting in the case of scarcely labeled samples in the target domain, global average pooling (GAP) is introduced to replace the fully-connected layers, and the traditional architecture in CNN is modified, to reduce the number of trainable parameters. Finally, by fully considering the transfer scenarios between diverse operating conditions and diverse machines, the cross-machine transfer experiments are designed with three gearbox datasets provided by the Prognostic and Health Management (PHM) 2009 conference, the Tsinghua University, and the University of Alberta. The results demonstrate the effectiveness of the proposed method with scarce labeled samples in the target domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吴彦祖的通通完成签到 ,获得积分10
1秒前
lx123发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
3秒前
Sara完成签到 ,获得积分10
3秒前
你怎么睡得着觉完成签到,获得积分10
3秒前
3秒前
xiaoxu完成签到,获得积分10
3秒前
4秒前
xiaoyan.yao完成签到,获得积分10
4秒前
5秒前
5秒前
桐桐应助醉在肩上采纳,获得10
6秒前
7秒前
8秒前
8秒前
嘉博学长完成签到,获得积分10
8秒前
9秒前
沧岚QAQ发布了新的文献求助10
9秒前
嘻嘻发布了新的文献求助10
10秒前
魔王降临发布了新的文献求助10
10秒前
KEHUGE发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
董舒婷发布了新的文献求助10
12秒前
正直静曼完成签到 ,获得积分10
12秒前
12秒前
moshi发布了新的文献求助10
13秒前
14秒前
14秒前
北冥有猫发布了新的文献求助10
14秒前
box发布了新的文献求助10
14秒前
14秒前
风中的觅风完成签到,获得积分10
14秒前
ningning完成签到,获得积分10
14秒前
大模型应助OO采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633094
求助须知:如何正确求助?哪些是违规求助? 4728561
关于积分的说明 14985128
捐赠科研通 4791070
什么是DOI,文献DOI怎么找? 2558755
邀请新用户注册赠送积分活动 1519164
关于科研通互助平台的介绍 1479502