Cross‐machine intelligent fault diagnosis of gearbox based on deep learning and parameter transfer

过度拟合 卷积神经网络 学习迁移 断层(地质) 领域(数学分析) 计算机科学 联营 人工智能 特征(语言学) 领域(数学) 深度学习 人工神经网络 机器学习 数据挖掘 模式识别(心理学) 地质学 数学分析 哲学 语言学 地震学 数学 纯数学
作者
Te Han,Taotao Zhou,Yongyong Xiang,Dongxiang Jiang
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (3) 被引量:34
标识
DOI:10.1002/stc.2898
摘要

With the rapid development of artificial intelligence technologies, data-driven methods have significantly contributed to the intelligent monitoring and diagnosis of mechanical systems. However, the state-of-the-art approaches, especially the deep learning-based ones, implicitly assume the availability of large amounts of labeled fault data for supervised training, which is often infeasible due to the highly reliable system design in the field. In this research, a deep transfer convolutional neural network (CNN) scheme is proposed to enhance the diagnosis performance when dealing with insufficient training data in the target domain. By utilizing transfer learning, rich but relevant feature representation can be learnt from massive data in the source domain. The learnt weights and biases in the source domain are transferred to the target task as the initial parameter values. Then, the transferred parameters are properly fine-tuned with the small labeled datasets in the target domain. To avoid overfitting in the case of scarcely labeled samples in the target domain, global average pooling (GAP) is introduced to replace the fully-connected layers, and the traditional architecture in CNN is modified, to reduce the number of trainable parameters. Finally, by fully considering the transfer scenarios between diverse operating conditions and diverse machines, the cross-machine transfer experiments are designed with three gearbox datasets provided by the Prognostic and Health Management (PHM) 2009 conference, the Tsinghua University, and the University of Alberta. The results demonstrate the effectiveness of the proposed method with scarce labeled samples in the target domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
有有完成签到 ,获得积分10
1秒前
小耶耶完成签到,获得积分10
1秒前
yao完成签到,获得积分10
1秒前
徐嘿嘿完成签到,获得积分10
3秒前
依居完成签到,获得积分10
4秒前
李健的小迷弟应助xxxlglm采纳,获得10
4秒前
5秒前
玉子卿完成签到,获得积分10
5秒前
mengyi完成签到,获得积分10
6秒前
qs发布了新的文献求助10
7秒前
聪明伊完成签到,获得积分10
7秒前
8秒前
bk2020113458完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
慕青应助漂亮的衬衫采纳,获得10
10秒前
10秒前
11秒前
XuziZhang完成签到,获得积分10
11秒前
11秒前
Lucas应助133333采纳,获得10
12秒前
徐嘻嘻完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
14秒前
Faceman发布了新的文献求助20
15秒前
16秒前
524974281完成签到,获得积分20
16秒前
乘风破浪完成签到,获得积分10
16秒前
半斤发布了新的文献求助20
16秒前
16秒前
hhc发布了新的文献求助10
16秒前
冷艳笑卉发布了新的文献求助10
18秒前
巴拉巴拉发布了新的文献求助10
18秒前
18秒前
慕青应助zhn采纳,获得10
19秒前
杳鸢应助524974281采纳,获得200
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942271
关于积分的说明 8507774
捐赠科研通 2617189
什么是DOI,文献DOI怎么找? 1430004
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186