Wi-Fi-Based Fall Detection Using Spectrogram Image of Channel State Information

光谱图 计算机科学 人工智能 卷积神经网络 信道状态信息 滑动窗口协议 模式识别(心理学) 分类器(UML) 计算机视觉 特征提取 无线 电信 窗口(计算) 操作系统
作者
Takashi Nakamura,Mondher Bouazizi,Kohei Yamamoto,Tomoaki Ohtsuki
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (18): 17220-17234 被引量:27
标识
DOI:10.1109/jiot.2022.3152315
摘要

Wi-Fi channel state information (CSI)-based fall detection systems have a great potential compared with other alternatives since they are nonintrusive and nonspace limited. However, in the conventional work on Wi-Fi CSI-based fall detection, a phenomenon is commonly observed: the classification performance degrades when data in different environments are used for learning and testing. Nonetheless, when the signal-to-noise-power ratio (SNR) is small, the conventional methods cannot capture features of motion and cannot segment signals accurately. Therefore, there is a need to address these problems in order to build a robust fall detection system. In this article, we propose a spectrogram-image-based fall detection using Wi-Fi CSI. Unlike the conventional method, CSI is segmented with a certain sliding-time window, and then the classifier detects fall by using the spectrogram image generated from the segmented CSI. We use a pretrained convolutional neural network (CNN) optimized for binary classification of the spectrogram images of the fall and nonfall motions. We carried out experiments to evaluate the classification performance of our proposed method against the conventional one by using motion data in two different rooms for learning and testing. As a result, we confirmed that our proposed method outperforms the conventional one and reaches over 0.92 accuracy. In addition, compared with the conventional method, the fall detection performance of our method does not degrade even when using different environment data for learning and testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yz_发布了新的文献求助10
1秒前
栖木发布了新的文献求助10
1秒前
1秒前
二二完成签到 ,获得积分10
2秒前
六一儿童节完成签到 ,获得积分10
3秒前
Atari完成签到,获得积分10
3秒前
贾南烟发布了新的文献求助10
3秒前
3秒前
鲤鱼鸽子应助张亚慧采纳,获得10
3秒前
思源应助王锋采纳,获得10
4秒前
星辰大海应助王锋采纳,获得10
4秒前
5秒前
西西里柠檬完成签到,获得积分10
5秒前
FG完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
dounai完成签到,获得积分10
7秒前
岑666完成签到,获得积分10
7秒前
研友_nxV0x8完成签到,获得积分10
7秒前
7秒前
123发布了新的文献求助10
8秒前
FG发布了新的文献求助10
8秒前
8秒前
8秒前
zuoqibin完成签到,获得积分10
9秒前
欢呼星月完成签到,获得积分20
9秒前
Skywalker发布了新的文献求助10
10秒前
clare发布了新的文献求助10
10秒前
10秒前
11秒前
鲤鱼鸽子应助尛瞐慶成采纳,获得10
12秒前
12秒前
啦啦啦喽完成签到,获得积分10
12秒前
13秒前
13秒前
阿福完成签到,获得积分10
13秒前
Alice发布了新的文献求助10
14秒前
科研通AI2S应助单薄书文采纳,获得10
14秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
An Introduction to Child Language 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299266
求助须知:如何正确求助?哪些是违规求助? 2934183
关于积分的说明 8467773
捐赠科研通 2607652
什么是DOI,文献DOI怎么找? 1423827
科研通“疑难数据库(出版商)”最低求助积分说明 661704
邀请新用户注册赠送积分活动 645391