已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Wi-Fi-Based Fall Detection Using Spectrogram Image of Channel State Information

光谱图 计算机科学 人工智能 卷积神经网络 信道状态信息 滑动窗口协议 模式识别(心理学) 分类器(UML) 计算机视觉 特征提取 无线 电信 窗口(计算) 操作系统
作者
Takashi Nakamura,Mondher Bouazizi,Kohei Yamamoto,Tomoaki Ohtsuki
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (18): 17220-17234 被引量:27
标识
DOI:10.1109/jiot.2022.3152315
摘要

Wi-Fi channel state information (CSI)-based fall detection systems have a great potential compared with other alternatives since they are nonintrusive and nonspace limited. However, in the conventional work on Wi-Fi CSI-based fall detection, a phenomenon is commonly observed: the classification performance degrades when data in different environments are used for learning and testing. Nonetheless, when the signal-to-noise-power ratio (SNR) is small, the conventional methods cannot capture features of motion and cannot segment signals accurately. Therefore, there is a need to address these problems in order to build a robust fall detection system. In this article, we propose a spectrogram-image-based fall detection using Wi-Fi CSI. Unlike the conventional method, CSI is segmented with a certain sliding-time window, and then the classifier detects fall by using the spectrogram image generated from the segmented CSI. We use a pretrained convolutional neural network (CNN) optimized for binary classification of the spectrogram images of the fall and nonfall motions. We carried out experiments to evaluate the classification performance of our proposed method against the conventional one by using motion data in two different rooms for learning and testing. As a result, we confirmed that our proposed method outperforms the conventional one and reaches over 0.92 accuracy. In addition, compared with the conventional method, the fall detection performance of our method does not degrade even when using different environment data for learning and testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨念文完成签到 ,获得积分10
3秒前
莉莉完成签到,获得积分20
5秒前
8秒前
幸福大白发布了新的文献求助10
13秒前
无奈的盼望完成签到 ,获得积分10
15秒前
大模型应助咚咚咚采纳,获得10
16秒前
曦熙完成签到,获得积分10
16秒前
记得吃蔬菜完成签到,获得积分10
19秒前
20秒前
ding应助hy采纳,获得10
23秒前
24秒前
24秒前
清璃完成签到 ,获得积分10
26秒前
咚咚咚发布了新的文献求助10
30秒前
CodeCraft应助医者仓鼠采纳,获得10
31秒前
buno应助wly1111采纳,获得10
35秒前
37秒前
SiO2完成签到 ,获得积分0
38秒前
46秒前
科研通AI5应助chenjun7080采纳,获得10
50秒前
医者仓鼠发布了新的文献求助10
52秒前
123发布了新的文献求助10
57秒前
Owen应助jichenzhang2024采纳,获得30
57秒前
58秒前
MXene应助木又采纳,获得20
58秒前
1分钟前
SciGPT应助高挑的如柏采纳,获得10
1分钟前
chenjun7080发布了新的文献求助10
1分钟前
SDUMoist发布了新的文献求助20
1分钟前
1分钟前
Thien发布了新的文献求助10
1分钟前
科研通AI2S应助络绎采纳,获得10
1分钟前
李健应助爱航哥多久了采纳,获得10
1分钟前
1分钟前
小马甲应助roro熊采纳,获得10
1分钟前
CipherSage应助毅诚菌采纳,获得10
1分钟前
Rita发布了新的文献求助50
1分钟前
linjane发布了新的文献求助10
1分钟前
SDUMoist完成签到,获得积分10
1分钟前
端庄的蜻蜓完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4625231
求助须知:如何正确求助?哪些是违规求助? 4024425
关于积分的说明 12457124
捐赠科研通 3709196
什么是DOI,文献DOI怎么找? 2045920
邀请新用户注册赠送积分活动 1077828
科研通“疑难数据库(出版商)”最低求助积分说明 960374