Fast detection of banana bunches and stalks in the natural environment based on deep learning

果园 园艺 人工智能 数学 计算机科学 工程类 生物 梁(结构) 土木工程
作者
Lanhui Fu,Fengyun Wu,Xiangjun Zou,Yinlong Jiang,Jiaquan Lin,Zhou Yang,Jieli Duan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106800-106800 被引量:29
标识
DOI:10.1016/j.compag.2022.106800
摘要

With the widespread application of machine vision technology in agriculture, the intelligent management of banana orchards is urgent. Accurate detection of banana bunches and stalks is a precondition for orchard yield estimation and automatic harvesting. In a complex banana orchard environment, banana bunches and stalks are similar to the leaves in color, and banana stalks are similar to the petiole in texture, making the detection of banana bunches and stalks in banana orchards challenging. This study proposes an accurate and fast multiclass detection method for banana bunches and stalks. A regular RGB camera was used to collect images. The well-known YOLOv4 network was used to detect the banana bunches and stalks, and the input image resolution was discussed by training and comparison. The banana bunch and stalk detection model showed excellent reliability and generalization ability in different illumination and occlusion scenarios. The AP of the banana bunch and stalk detection was 99.55% and 87.82%, respectively, and the mAP of the detection model was 93.69%. The average execution time was 44.96 ms. The detection of small-sized banana bunches and stalks was discussed, and its significance in banana orchard applications was analyzed. The experimental results show that the fast real-time detection of banana bunches and stalks in the natural environment is helpful for the intelligent management of banana orchards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
初十发布了新的文献求助10
刚刚
刚刚
刚刚
充电宝应助yyyysh采纳,获得10
1秒前
芈冖发布了新的文献求助10
1秒前
大橙子发布了新的文献求助10
1秒前
搜集达人应助lin采纳,获得10
2秒前
深情的友易完成签到,获得积分10
3秒前
pigpara完成签到,获得积分10
3秒前
3秒前
3秒前
Hello应助awaw采纳,获得10
3秒前
3秒前
桐桐应助白翊辰采纳,获得10
4秒前
缪甲烷发布了新的文献求助10
4秒前
4秒前
4秒前
乞力马扎罗的雪完成签到,获得积分20
4秒前
小岚花发布了新的文献求助10
4秒前
陈陈发布了新的文献求助10
4秒前
4秒前
六六大顺完成签到,获得积分10
5秒前
南宫清涟应助一米八采纳,获得10
5秒前
5秒前
ni完成签到,获得积分10
5秒前
6秒前
6秒前
飞翔的霸天哥应助dywen采纳,获得30
7秒前
子车茗应助胡星采纳,获得30
7秒前
8秒前
亢kxh发布了新的文献求助10
8秒前
8秒前
ice发布了新的文献求助20
9秒前
缥缈无春发布了新的文献求助10
9秒前
哒布6发布了新的文献求助10
9秒前
CodeCraft应助毛豆爱睡觉采纳,获得10
9秒前
烟花应助apollo3232采纳,获得10
9秒前
10秒前
平常的问儿完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3513930
求助须知:如何正确求助?哪些是违规求助? 3096253
关于积分的说明 9230934
捐赠科研通 2791392
什么是DOI,文献DOI怎么找? 1531785
邀请新用户注册赠送积分活动 711625
科研通“疑难数据库(出版商)”最低求助积分说明 706929