Multi-Modal Remote Sensing Image Matching Considering Co-Occurrence Filter

尺度不变特征变换 人工智能 模式识别(心理学) 特征(语言学) 缩放空间 数学 计算机视觉 特征向量 计算机科学 特征提取 算法 图像处理 图像(数学) 语言学 哲学
作者
Yongxiang Yao,Yongjun Zhang,Yi Wan,Xinyi Liu,Xiaohu Yan,Jiayuan Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2584-2597 被引量:67
标识
DOI:10.1109/tip.2022.3157450
摘要

Traditional image feature matching methods cannot obtain satisfactory results for multi-modal remote sensing images (MRSIs) in most cases because different imaging mechanisms bring significant nonlinear radiation distortion differences (NRD) and complicated geometric distortion. The key to MRSI matching is trying to weakening or eliminating the NRD and extract more edge features. This paper introduces a new robust MRSI matching method based on co-occurrence filter (CoF) space matching (CoFSM). Our algorithm has three steps: (1) a new co-occurrence scale space based on CoF is constructed, and the feature points in the new scale space are extracted by the optimized image gradient; (2) the gradient location and orientation histogram algorithm is used to construct a 152-dimensional log-polar descriptor, which makes the multi-modal image description more robust; and (3) a position-optimized Euclidean distance function is established, which is used to calculate the displacement error of the feature points in the horizontal and vertical directions to optimize the matching distance function. The optimization results then are rematched, and the outliers are eliminated using a fast sample consensus algorithm. We performed comparison experiments on our CoFSM method with the scale-invariant feature transform (SIFT), upright-SIFT, PSO-SIFT, and radiation-variation insensitive feature transform (RIFT) methods using a multi-modal image dataset. The algorithms of each method were comprehensively evaluated both qualitatively and quantitatively. Our experimental results show that our proposed CoFSM method can obtain satisfactory results both in the number of corresponding points and the accuracy of its root mean square error. The average number of obtained matches is namely 489.52 of CoFSM, and 412.52 of RIFT. As mentioned earlier, the matching effect of the proposed method was significantly greater than the three state-of-art methods. Our proposed CoFSM method achieved good effectiveness and robustness. Executable programs of CoFSM and MRSI datasets are published: https://skyearth.org/publication/project/CoFSM/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZ发布了新的文献求助10
刚刚
1秒前
1秒前
大气盼柳发布了新的文献求助10
1秒前
Hello应助二立采纳,获得10
2秒前
Marilinta完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
史迪仔完成签到,获得积分10
4秒前
大胆飞阳完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
SPRETEND完成签到,获得积分20
7秒前
7秒前
8秒前
Aaron发布了新的文献求助10
8秒前
道森完成签到,获得积分10
9秒前
研友_ngqxV8完成签到,获得积分0
9秒前
不将就1345应助Lu采纳,获得20
9秒前
晚来天欲雪完成签到 ,获得积分10
9秒前
大胆飞阳发布了新的文献求助10
9秒前
小魏发布了新的文献求助10
9秒前
AJS完成签到,获得积分10
10秒前
叮叮爱吃糖完成签到,获得积分10
10秒前
斯文败类应助wu61采纳,获得10
10秒前
11秒前
Peissen发布了新的文献求助10
11秒前
王宇杰发布了新的文献求助10
11秒前
FashionBoy应助飘逸山兰采纳,获得10
11秒前
SCIAI发布了新的文献求助10
12秒前
12秒前
落寞芷巧发布了新的文献求助10
12秒前
12秒前
mona完成签到,获得积分10
12秒前
王金铭发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300741
求助须知:如何正确求助?哪些是违规求助? 2935659
关于积分的说明 8473901
捐赠科研通 2609238
什么是DOI,文献DOI怎么找? 1424634
科研通“疑难数据库(出版商)”最低求助积分说明 662065
邀请新用户注册赠送积分活动 645838