亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Modal Remote Sensing Image Matching Considering Co-Occurrence Filter

尺度不变特征变换 人工智能 模式识别(心理学) 特征(语言学) 缩放空间 数学 计算机视觉 特征向量 计算机科学 特征提取 算法 图像处理 图像(数学) 语言学 哲学
作者
Yongxiang Yao,Yongjun Zhang,Yi Wan,Xinyi Liu,Xiaohu Yan,Jiayuan Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2584-2597 被引量:67
标识
DOI:10.1109/tip.2022.3157450
摘要

Traditional image feature matching methods cannot obtain satisfactory results for multi-modal remote sensing images (MRSIs) in most cases because different imaging mechanisms bring significant nonlinear radiation distortion differences (NRD) and complicated geometric distortion. The key to MRSI matching is trying to weakening or eliminating the NRD and extract more edge features. This paper introduces a new robust MRSI matching method based on co-occurrence filter (CoF) space matching (CoFSM). Our algorithm has three steps: (1) a new co-occurrence scale space based on CoF is constructed, and the feature points in the new scale space are extracted by the optimized image gradient; (2) the gradient location and orientation histogram algorithm is used to construct a 152-dimensional log-polar descriptor, which makes the multi-modal image description more robust; and (3) a position-optimized Euclidean distance function is established, which is used to calculate the displacement error of the feature points in the horizontal and vertical directions to optimize the matching distance function. The optimization results then are rematched, and the outliers are eliminated using a fast sample consensus algorithm. We performed comparison experiments on our CoFSM method with the scale-invariant feature transform (SIFT), upright-SIFT, PSO-SIFT, and radiation-variation insensitive feature transform (RIFT) methods using a multi-modal image dataset. The algorithms of each method were comprehensively evaluated both qualitatively and quantitatively. Our experimental results show that our proposed CoFSM method can obtain satisfactory results both in the number of corresponding points and the accuracy of its root mean square error. The average number of obtained matches is namely 489.52 of CoFSM, and 412.52 of RIFT. As mentioned earlier, the matching effect of the proposed method was significantly greater than the three state-of-art methods. Our proposed CoFSM method achieved good effectiveness and robustness. Executable programs of CoFSM and MRSI datasets are published: https://skyearth.org/publication/project/CoFSM/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
48秒前
Artin发布了新的文献求助200
55秒前
充电宝应助dongling采纳,获得10
1分钟前
spark810发布了新的文献求助10
1分钟前
spark810发布了新的文献求助10
1分钟前
1分钟前
spark810发布了新的文献求助10
1分钟前
spark810发布了新的文献求助10
2分钟前
2分钟前
Artin完成签到,获得积分10
2分钟前
spark810发布了新的文献求助10
2分钟前
2分钟前
高高雁枫完成签到 ,获得积分10
3分钟前
夏爽2023发布了新的文献求助10
3分钟前
和敬清寂发布了新的文献求助10
4分钟前
4分钟前
香蕉觅云应助和敬清寂采纳,获得10
4分钟前
5分钟前
和敬清寂发布了新的文献求助10
5分钟前
和敬清寂完成签到,获得积分20
5分钟前
5分钟前
123发布了新的文献求助10
5分钟前
666完成签到 ,获得积分10
6分钟前
123完成签到 ,获得积分20
6分钟前
vegs发布了新的文献求助10
6分钟前
研友_VZG7GZ应助123采纳,获得10
6分钟前
vegs完成签到,获得积分20
6分钟前
老宇126完成签到,获得积分10
6分钟前
7分钟前
木子发布了新的文献求助10
7分钟前
木子完成签到,获得积分20
7分钟前
7分钟前
生言生语完成签到,获得积分10
8分钟前
一辉完成签到 ,获得积分10
8分钟前
木子关注了科研通微信公众号
8分钟前
mengyuhuan完成签到 ,获得积分0
9分钟前
10分钟前
烟花应助干重采纳,获得10
10分钟前
10分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085446
求助须知:如何正确求助?哪些是违规求助? 2738298
关于积分的说明 7548854
捐赠科研通 2387919
什么是DOI,文献DOI怎么找? 1266219
科研通“疑难数据库(出版商)”最低求助积分说明 613332
版权声明 598584