Functional Data Analysis for Sparse Longitudinal Data

功能数据分析 阿卡克信息准则 函数主成分分析 数学 点式的 非参数统计 一致性(知识库) 应用数学 协方差 统计 算法 数学分析 几何学
作者
Fang Yao,Hans‐Georg Müller,Jane‐Ling Wang
标识
DOI:10.1198/016214504000001745
摘要

AbstractWe propose a nonparametric method to perform functional principal components analysis for the case of sparse longitudinal data. The method aims at irregularly spaced longitudinal data, where the number of repeated measurements available per subject is small. In contrast, classical functional data analysis requires a large number of regularly spaced measurements per subject. We assume that the repeated measurements are located randomly with a random number of repetitions for each subject and are determined by an underlying smooth random (subject-specific) trajectory plus measurement errors. Basic elements of our approach are the parsimonious estimation of the covariance structure and mean function of the trajectories, and the estimation of the variance of the measurement errors. The eigenfunction basis is estimated from the data, and functional principal components score estimates are obtained by a conditioning step. This conditional estimation method is conceptually simple and straightforward to implement. A key step is the derivation of asymptotic consistency and distribution results under mild conditions, using tools from functional analysis. Functional data analysis for sparse longitudinal data enables prediction of individual smooth trajectories even if only one or few measurements are available for a subject. Asymptotic pointwise and simultaneous confidence bands are obtained for predicted individual trajectories, based on asymptotic distributions, for simultaneous bands under the assumption of a finite number of components. Model selection techniques, such as the Akaike information criterion, are used to choose the model dimension corresponding to the number of eigenfunctions in the model. The methods are illustrated with a simulation study, longitudinal CD4 data for a sample of AIDS patients, and time-course gene expression data for the yeast cell cycle.KEY WORDS : AsymptoticsConditioningConfidence bandMeasurement errorPrincipal componentsSimultaneous inferenceSmoothing
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
温柔一刀完成签到,获得积分10
1秒前
英姑应助玶阳采纳,获得10
1秒前
学术废物发布了新的文献求助30
1秒前
若尘发布了新的文献求助10
2秒前
2秒前
2秒前
SONG完成签到,获得积分10
2秒前
方超完成签到,获得积分10
2秒前
完美夏天完成签到,获得积分10
3秒前
ads完成签到,获得积分10
4秒前
4秒前
风中少年发布了新的文献求助10
4秒前
5秒前
11111111完成签到,获得积分10
6秒前
洁洁完成签到,获得积分20
6秒前
ads发布了新的文献求助10
6秒前
7秒前
7秒前
好困应助wei_yukun123采纳,获得10
8秒前
8秒前
8秒前
脑洞疼应助yyymmma采纳,获得10
9秒前
9秒前
rancho完成签到 ,获得积分10
9秒前
aldehyde完成签到,获得积分0
10秒前
知性的绮兰完成签到,获得积分10
11秒前
11秒前
晴雨之间完成签到,获得积分10
11秒前
11秒前
12秒前
搜集达人应助等后来呢采纳,获得10
12秒前
良菵完成签到,获得积分10
13秒前
科研通AI2S应助dfsdgyu采纳,获得10
15秒前
vicky发布了新的文献求助10
15秒前
一轮明月完成签到 ,获得积分10
16秒前
内向靖巧发布了新的文献求助10
17秒前
贤惠的老黑完成签到 ,获得积分10
18秒前
niu完成签到,获得积分20
18秒前
18秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261994
求助须知:如何正确求助?哪些是违规求助? 2902797
关于积分的说明 8322213
捐赠科研通 2572757
什么是DOI,文献DOI怎么找? 1397837
科研通“疑难数据库(出版商)”最低求助积分说明 653912
邀请新用户注册赠送积分活动 632451