Functional Data Analysis for Sparse Longitudinal Data

功能数据分析 阿卡克信息准则 函数主成分分析 数学 点式的 非参数统计 一致性(知识库) 应用数学 协方差 统计 算法 数学分析 几何学
作者
Fang Yao,Hans‐Georg Müller,Jane‐Ling Wang
标识
DOI:10.1198/016214504000001745
摘要

AbstractWe propose a nonparametric method to perform functional principal components analysis for the case of sparse longitudinal data. The method aims at irregularly spaced longitudinal data, where the number of repeated measurements available per subject is small. In contrast, classical functional data analysis requires a large number of regularly spaced measurements per subject. We assume that the repeated measurements are located randomly with a random number of repetitions for each subject and are determined by an underlying smooth random (subject-specific) trajectory plus measurement errors. Basic elements of our approach are the parsimonious estimation of the covariance structure and mean function of the trajectories, and the estimation of the variance of the measurement errors. The eigenfunction basis is estimated from the data, and functional principal components score estimates are obtained by a conditioning step. This conditional estimation method is conceptually simple and straightforward to implement. A key step is the derivation of asymptotic consistency and distribution results under mild conditions, using tools from functional analysis. Functional data analysis for sparse longitudinal data enables prediction of individual smooth trajectories even if only one or few measurements are available for a subject. Asymptotic pointwise and simultaneous confidence bands are obtained for predicted individual trajectories, based on asymptotic distributions, for simultaneous bands under the assumption of a finite number of components. Model selection techniques, such as the Akaike information criterion, are used to choose the model dimension corresponding to the number of eigenfunctions in the model. The methods are illustrated with a simulation study, longitudinal CD4 data for a sample of AIDS patients, and time-course gene expression data for the yeast cell cycle.KEY WORDS : AsymptoticsConditioningConfidence bandMeasurement errorPrincipal componentsSimultaneous inferenceSmoothing
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿甘发布了新的文献求助10
刚刚
tomaterio发布了新的文献求助10
刚刚
酷波er应助黄叶飞采纳,获得10
2秒前
Dky_安静的初夏应助湛湛采纳,获得10
2秒前
俟天晴完成签到,获得积分10
3秒前
liuguohua126发布了新的文献求助10
3秒前
青云完成签到,获得积分10
4秒前
Hus11221完成签到,获得积分10
6秒前
catesina完成签到,获得积分10
6秒前
tomaterio完成签到,获得积分10
6秒前
xinxin完成签到,获得积分10
6秒前
CodeCraft应助大胆绮兰采纳,获得10
6秒前
感动哈密瓜完成签到 ,获得积分10
8秒前
无奈的萝完成签到,获得积分10
12秒前
幽默亦旋完成签到 ,获得积分10
12秒前
英俊的铭应助kaio_escolar采纳,获得10
12秒前
勤奋尔冬完成签到 ,获得积分10
13秒前
秋风今是完成签到 ,获得积分10
13秒前
15秒前
步步完成签到 ,获得积分10
16秒前
16秒前
霸气的思柔完成签到,获得积分10
17秒前
俏皮小土豆完成签到,获得积分10
17秒前
Tia完成签到 ,获得积分10
17秒前
18秒前
doc发布了新的文献求助10
18秒前
了一李完成签到 ,获得积分10
19秒前
Joyce发布了新的文献求助10
20秒前
加湿器发布了新的文献求助200
22秒前
感动哈密瓜关注了科研通微信公众号
23秒前
24秒前
hammer发布了新的文献求助10
25秒前
苗条一兰完成签到,获得积分10
25秒前
26秒前
DENG发布了新的文献求助20
28秒前
28秒前
木木发布了新的文献求助10
28秒前
30秒前
doc完成签到,获得积分10
30秒前
杨自强完成签到,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965950
求助须知:如何正确求助?哪些是违规求助? 3511289
关于积分的说明 11157176
捐赠科研通 3245859
什么是DOI,文献DOI怎么找? 1793182
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286